Skip to main content

Fractional Kinetics in Pseudochaotic Systems and Its Applications

  • Chapter
  • 4026 Accesses

The phenomenon of stickiness of the dynamical trajectories to the domains of periodic orbits (islands), or simply to periodic orbits, can be considered a primary source of the fractional kinetic equation (FKE). An additional condition for the FKE occurrence is a property of the corresponding sticky domains to have space-time invariance under the space-time renormalization transform. The dynamics in some class of polygonal billiards is pseudochaotic (i.e., dynamics is random but the Lyapunov exponent is zero), and the corresponding features of the self-similarity are reflected in the discrete space-time renormalization invariance. We consider an example of such a billiard and its dynamical and kinetic properties that leads to the FKE. Keywords Fractional kinetics, pseudochaos, recurrences, billiards.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zaslavsky GM (2002) Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 371:461-580.

    Article  MATH  MathSciNet  Google Scholar 

  2. Zaslavsky GM (1992) Anomalous transport and fractal kinetics. In: Topological Aspects of the Dynamics of Fluids and Plasmas (edited by Moffatt HK, Zaslavsky GM, Comte P, Tabor M), pp. 481-492. Kluwer, Dordrecht.

    Google Scholar 

  3. Zaslavsky GM (1994a) Fractional kinetic-equation for Hamiltonian chaos. Physica D, 76:110-122.

    Article  MathSciNet  Google Scholar 

  4. Zaslavsky GM (1994b) Renormalization group theory of anomalous transport in systems with Hamiltonian chaos. Chaos, 4:25-33.

    Article  MATH  MathSciNet  Google Scholar 

  5. Montroll EW, Shlesinger MF (1984) On the wonderful world of random walk. In: Studies in Statistical Mechanics, Vol. 11 (edited by Lebowitz J, Montrolll EW), pp. 1-121. North-Holland, Amsterdam.

    Google Scholar 

  6. Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos, 7:753-764.

    Article  MATH  MathSciNet  Google Scholar 

  7. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339:1-77.

    Article  MATH  MathSciNet  Google Scholar 

  8. Ott E (1993) Chaos in Dynamical Systems. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  9. Leoncini X, Zaslavsky GM (2002) Jets, stickiness, and anomalous transport. Phys. Rev. E, 65:Art. No. 046216.

    Google Scholar 

  10. Adler R, Kitchens B, Tresser C (2001) Dynamics of non-ergodic piece-wise affine maps of the torus. Ergodic Theory Dynam. Sys. 21:959-999.

    MATH  MathSciNet  Google Scholar 

  11. Gutkin E, Katok A (1989) Weakly mixing billiards. In: Holomorphic Dynamics, Lecture Notes in Mathematics 1345:163-176. Springer, Berlin.

    Google Scholar 

  12. Katok A (1987) The growth-rate for the number of singular and periodic-orbits for a polygonal billiard. Commun. Math. Phys., 111:151-160.

    Article  MATH  MathSciNet  Google Scholar 

  13. Zorich A (1997) Deviation for interval exchange transformations. Ergodic Theory Dynam. Sys., 17:1477-1499.

    MATH  MathSciNet  Google Scholar 

  14. Gutkin E (1986) Billiards in polygons. Physica D, 19:311-333.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gutkin, E (1996) Billiards in polygons: Survey of recent results. J. Stat. Phys. 83:7-26.

    Article  MATH  MathSciNet  Google Scholar 

  16. Richens PJ, Berry MV (1981) Pseudointegrable systems in classical and quantum- mechanics. Physica D, 2:495-512.

    Article  MathSciNet  Google Scholar 

  17. Kouptsov KL, Lowenstein JH, Vivaldi F (2002) Quadratic rational rotations of the torus and dual lattice maps. Nonlinearity, 15:1795-1842.

    Article  MATH  MathSciNet  Google Scholar 

  18. Lowenstein JH, Hatjispyros S, Vivaldi F (1997) Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off. Chaos, 7:49-66.

    Article  MATH  MathSciNet  Google Scholar 

  19. Lowenstein JH, Vivaldi F (1998) Anomalous transport in a model of Hamiltonian round-off. Nonlinearity, 11:1321-1350.

    Article  MATH  MathSciNet  Google Scholar 

  20. Lowenstein JH, Kouptsov KL, Vivaldi F (2004) Recursive tiling and geometry of piecewise rotations by π/7. Nonlinearity, 17:1-25.

    Article  MathSciNet  Google Scholar 

  21. Lowenstein JH, Poggiaspalla G, Vivaldi F. Sticky orbits in a kicked-oscillator model. Not published.

    Google Scholar 

  22. Ashwin P (1997) Elliptic behaviour in the sawtooth standard map. Phys. Lett. A, 232:409-416.

    Article  MATH  MathSciNet  Google Scholar 

  23. Ashwin P, Chambers W, Petrov G (1997) Lossless digital filter overflow oscillations; approximation of invariant fractals. Intern. J. Bifur. Chaos, 7:2603-2610.

    Article  MATH  Google Scholar 

  24. Chua LO, Lin T (1988) Chaos in digital filters. IEEE Trans., CAS-35:648-658.

    MathSciNet  Google Scholar 

  25. Chua LO, Lin T (1990) Fractal pattern of 2nd order nonlinear digital filters - a new symbolic analysis. Int. J. Cir. Theory Appl., 18:541-550.

    Article  MATH  MathSciNet  Google Scholar 

  26. Bernardo M, Courbage M, Truong TT (2003) Random walks generated by area preserving maps with zero Lyapunov exponents. Commun. Nonlin. Sci. and Numerical Simul., 8:189-199.

    Article  MATH  MathSciNet  Google Scholar 

  27. Courbage M, Hamdan D (1995) Unpredictability in some nonchaotic dynamical systems. Phys. Rev. Lett., 74:5166-5169.

    Article  Google Scholar 

  28. Courbage M, Hamdan D. (1997) Decay of correlations and mixing properties in a dynamical system with zero K-S entropy. Ergodic Theory Dynam. Sys., 17:87-103.

    MATH  MathSciNet  Google Scholar 

  29. Galperin GA, Zemlyakov AN (1990) Mathematical Billiards. Nauka, Moscow.

    Google Scholar 

  30. Sornette D (1998) Discrete-scale invariance and complex dimensions. Phys. Rep., 297:239-270.

    Article  MathSciNet  Google Scholar 

  31. Carreras BA, Lynch VE, Garcia L, Edelman M, Zaslavsky GM (2003) Topological instability along filamented invariant surfaces. Chaos, 13:1175-1187.

    Article  MATH  MathSciNet  Google Scholar 

  32. Zaslavsky GM, Carreras BA, Lynch VE, Garcia L, Edelman M. Topological instability along invariant surfaces and Pseudochaotic Transport. Phys. Rev., E 72:Art. No. 026227.

    Google Scholar 

  33. Zaslavsky GM, Edelman M (2001) Weak mixing and anomalous kinetics along filamented surfaces. Chaos, 11:295-305.

    Article  MATH  MathSciNet  Google Scholar 

  34. Zaslavsky GM, Edelman M (2004) Fractional kinetics: from pseudochaotic dynamics to Maxwell’s Demon. Physica D, 193:128-147.

    Article  MATH  MathSciNet  Google Scholar 

  35. Khinchin AYa (1964) Continued Fractions. University of Chicago Press, Chicago.

    Google Scholar 

  36. Hughes BD, Shlesinger MF, Montroll EW (1981) Random walks with self-similar clusters(stochastic processes- stable distributions- fractals- nondifferentiable functions). Proc. Nat. Acad. Sci. USA, 78:3287-3291.

    Article  MATH  MathSciNet  Google Scholar 

  37. Niemeijer Th, van Leeuwen JMJ (1976) Renormalization theory for Ising-like spin systems. In: Phase Transition and Critical Phenomena, Vol. 6 (edited by Domb C, Green MS), pp. 425-501. Academic Press, London.

    Google Scholar 

  38. Lyubomudrov O, Edelman M, Zaslavsky GM (2003) Pseudochaotic systems and their fractional kinetics. Int. J. Mod. Phys., B 17:4149-4167.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zaslavsky, G.M. (2007). Fractional Kinetics in Pseudochaotic Systems and Its Applications. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics