Skip to main content

Pathway Engineering of the Plant Vitamin C Metabolic Network

  • Chapter

Abstract

Vitamin C (ascorbic acid, AsA) is an important primary metabolite of plants that functions as an antioxidant, an enzyme cofactor, and a cell-signalling modulator in a wide array of crucial physiological processes, including biosynthesis of the cell wall, secondary metabolites and phytohormones, stress resistance, photoprotection, cell division, senescence, and growth. Humans and related primates have lost the ability to synthesize AsA and therefore must obtain it in the diet – primarily from plants. Despite its importance, our understanding of plant vitamin C biosynthesis remains incomplete. Several routes leading to AsA formation have been proposed: from d-glucose via d-mannose and l-galactose; from myo-inositol; from galacturonic acid, and from l-gulose. It is unclear whether these are independent pathways or whether they interlink, possibly via enzymes with nonspecific activity. Several enzymes in the vitamin C network have yzet to be characterized, either biochemically or genetically, and the relative contribution of each branch to total AsA in plant tissues, and the mechanisms behind AsA homeostasis are largely unknown. Mutant analysis and transgenic studies in Arabidopsis thaliana and other model systems have provided important insight into the regulation, activities, integration, and evolution of individual enzymes and are already providing a knowledge base for breeding and transgenic approaches to modify the level of vitamin C in agricultural crops

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius, F, Gonzalez-Lamonthe, R, Caballero, JL, Muñoz-Blanco, J, Botella, M.A, and Valpuesta, M, 2003, Engineering increased vitamin C levels in plants by over-expression of a d-galacturonic acid reductase. Nat Biotechnol 21: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Arrigoni, O, and De Tullio, MC, 2002, Ascorbic acid: much more than just an antioxidant, Biochim Biophys Acta 1569: 1–9.

    PubMed  CAS  Google Scholar 

  • Arrigoni, O, Zacheo, G, Arrigoni-Liso, R, Bleve-Zacheo, T, and Lamberte, F, 1979, Relationship between ascorbic acid and resistance in tomato plants to Meloidogyne incognita, Phytopathol 69: 579–581.

    CAS  Google Scholar 

  • Bagchi, D, 2006, Nutraceuticals and functional foods regulations in the United States and around the world, Toxicology 221: 1–3.

    Article  PubMed  CAS  Google Scholar 

  • Baig, MM, Kelly, S, and Loewus, F, 1970, l-Ascorbic acid biosynthesis in higher plants from l-gulono-1,4-lactone and l-galactono-1,4-lactone, Plant Physiol 46: 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Barth, C, Moeder, W, Klessig, DF, and Conklin, PL, 2004, The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1, Plant Physiol 134: 1784–1792.

    Article  PubMed  CAS  Google Scholar 

  • Barber, GA, and Hebda, PA, 1982, GDP-d-mannose: GDP-l-galactose epimerase from Chlorella pyrenoidosa, Methods Enzymol 83: 522–525.

    PubMed  CAS  Google Scholar 

  • Bsoul, SA, and Terezhalmy, GT, 2004, Vitamin C in health and disease, J Contemp Dent Pract 2: 1–13.

    Google Scholar 

  • Chen, Z, and Gallie, DR, 2004, The ascorbic acid redox state controls guard cell signaling and stomatal movement, Plant Cell 16: 1143-1162.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z, and Gallie, DR, 2005, Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance, Plant Physiol 138: 1673–1689.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z, Young, TE, Linj, J, Chang, SC, and Gallie, DR, 2003, Increasing vitamin C content of plants through enhanced ascorbate recycling, Proc Natl Acad Sci USA 100: 3525–3530.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q, Espey, MG, Krishna, MCy, Mitchell, JB, Corpe, CP, Buettner, GR, Shacter, E, and Levine, M, 2005, Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues, Proc Natl Acad Sci USA 102: 13604–13609.

    Article  PubMed  CAS  Google Scholar 

  • Conklin, PL, and Barth, C, 2004, Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence, Plant Cell Environ 27: 959–970.

    Article  CAS  Google Scholar 

  • Conklin, PL, Williams, EH, Last, RL, 1996, Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant, Proc Natl Acad Sci USA 3: 9970–9974.

    Article  Google Scholar 

  • Conklin, PL, Norris, SR, Wheeler, GL, Williams, EH, Smirnoff, N, and Last, RL, 1999, Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis, Proc Natl Acad Sci USA 96: 4198–4203.

    Article  PubMed  CAS  Google Scholar 

  • Dalton, DA, Joyner, SL, Becana, M, Iturbe-Ormaetxe I, and Chatfield, JM, 1998, Antioxidant defenses in the peripheral cell layers of legume root nodules, Plant Physiol 116: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Danna, CH, Bartoli, CG, Sacco, Fy, Ingala, LR, Santa-Maria, GE, Guiamet, JJ, and Ugalde, RA, 2003, Thylakoid bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity, Plant Physiol 132: 2116–2125.

    Article  PubMed  CAS  Google Scholar 

  • Davey, W, Gilot, Cy, Persiau, G.y, Østergaard, J, Han, Y, and Van Montagu, M, 1999, Ascorbate biosynthesis in Arabidopsis cell suspension culture, Plant Physiol 121: 535–543.

    Article  PubMed  CAS  Google Scholar 

  • Davey, MW, Van Montagu, M, Inzé, D.y, Sanmartin, M.y, Kanellis, A, Smirnoff, N, Benzie, IJJ, Strain, JJ, Favell, D, and Fletcher, J, 2000, Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing, J Sci Food Agric 80: 825–860.

    Article  CAS  Google Scholar 

  • De Tullio, MC, and Arrigoni, O, 2004, Hopes, disillusions and more hopes from vitamin C, Cell Mol Life Sci 61: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • DiMatteo, A, Hancock, RD, Ross, HA, Frusciante, L, and Viola, R, 2003, Characterization of Chlorella pyrenoidosa L-ascorbic acid accumulating mutants: Identification of an enhanced biosynthetic enzyme activity and cloning of the putative gene from Arabidopsis thaliana, Comp Biochem Physiol A 134: S155.

    Google Scholar 

  • Fernie, AR, Tadmor, Y, and Zamir, D, 2006, Natural genetic variation for improving crop quality, Curr Opin Plant Biol 9: 196–202.

    Article  PubMed  Google Scholar 

  • Franceschi, VR, and Tarlyn, NM, 2002, l-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants, Plant Physiol 130: 649–656.

    Article  PubMed  CAS  Google Scholar 

  • Gatzek, S, Wheeler, GL, and Smirnoff, N, 2002, Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis, Plant J 30: 541–553.

    Article  PubMed  CAS  Google Scholar 

  • Grace, SC, and Logan, BA, 1996, Acclimation of foliar antioxidant systems to growth irradiance in 3 broad-leaved evergreen species, Plant Physiol 112: 163–1640.

    Google Scholar 

  • Green, MA, and Fry, SC, 2005, Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate, Nature 433: 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, RD, and Viola, R, 2005, Improving the nutritional value of crops through enhancement of l-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities, J Agric Food Chem 53: 5248–5257.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, RD, McRae, D, Haupt, S, and Viola, R, 2003, Synthesis of l-ascorbic acid in the phloem, BMC Plant Biol 3: 7.

    Article  PubMed  Google Scholar 

  • Horemans, N, Foyer, CH, Potters, G, and Asard, H., 2000, Ascorbate function and associated transport systems in plants, Plant Physiol Biochem 38: 531–540.

    Article  CAS  Google Scholar 

  • Imai, T, Karita, S, Shiratori, G, Hattori, M, Nunome, T, Oba, K, and Hirai, M, 1998, l-galactono-gamma-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis, Plant Cell Physiol 39: 1350–1358.

    PubMed  CAS  Google Scholar 

  • Isherwood, FA, Chen, YT, and Mapson, LW, 1954, Synthesis of l-ascorbic acid in plants and animals, Biochem J 56: 1–15.

    PubMed  CAS  Google Scholar 

  • Jain, AK, and Nessler, CL, 2000, Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants, Mol Breed 6: 73–78.

    Article  CAS  Google Scholar 

  • Kanter, U, Usadel, B, Guerineau, F, Li, Yy, Pauly, M, and Tenhaken, R, 2005, The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides, Planta 221: 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R, Renz, FSy, and Kossmann, Jy, 1999, Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence, Plant J 19: 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Kiddle, G, Pastori, G My, Bernard, Sy, Pignocchi, C, Antoniw, J, Verrier, PyJy, and Foyer, CH, 2003, Effects on leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana, Antiox Redox Signal 5: 23–32.

    Article  CAS  Google Scholar 

  • Laing, WA, Bulley, Sy, Wright, My, Cooney, Jyy, Jensen, Dy, Barraclough, D, and MacRae E, 2004, A highly specific l-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis, Proc.y Natl Acad Sci USA 101: 16976–16981.

    Article  CAS  Google Scholar 

  • Lee, KW, Lee, HJ, Surh, YJ, and Lee, CY, 2003, Vitamin C and cancer chemoprevention: reappraisal, Am J Clin Nutr 78: 1074–1078.

    PubMed  CAS  Google Scholar 

  • Levi, F, Pasche, C, Lucchini, F, and La Vecchia, C, 2001, Dietary intake of selected micronutrients and breast-cancer risk, Int J Cancer 91: 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Levine, M, Wang, Y, Padayatty, SJ, and Morrow, J, 2001, A new recommended dietary allowance of vitamin C for healthy young women, Proc Natl Acad Sci USA 98: 9842–9846.

    Article  PubMed  CAS  Google Scholar 

  • Loewus, FA, 1999, Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi, Phytochem 52: 193–210.

    Article  CAS  Google Scholar 

  • Loewus, FA, and Kelly, S, 1961, The metabolism of D-galacturonic acid and its methyl ester in the detached ripening strawberry, Arch Biochem Biophys 95: 483–493.

    Article  PubMed  CAS  Google Scholar 

  • Lorence, A, Chevone, BI, Mendes, P, and Nessler, CL, 2004a, myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis, Plant Physiol 134: 1200–1205.

    Article  CAS  Google Scholar 

  • Lorence, A, Robinson, J, Chevone, BI, Mendes, P, and Nessler, CL, 2004b, Contribution of the myo-inositol oxygenase (miox) gene family of Arabidopsis thaliana to ascorbate biosynthesis, Abstract submitted to the “15 International Conference on Arabidopsis Research”, July 11–14, Berlin, Germany.

    Google Scholar 

  • Lorence, A, Rogers, AM, Mendes, P, Zhang, W, Chevone, BI, and Nessler CL, 2004c, Identification and characterization of a putative glucuronic acid reductase in Arabidopsis thaliana, Abstract submitted to the “15 International Conference on Arabidopsis Research”, July 11–14, Berlin, Germany.

    Google Scholar 

  • Lukowitz, W, Nickle, TC, Meinke, DW, Last, RL, Conklin, PL, and Somerville, C R, 2001, Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis, Proc Natl Acad Sci USA 98: 2262–2267.

    Article  PubMed  CAS  Google Scholar 

  • Major, L, Wolucka, BA, and Naismith, JH, 2005, Structure and function of GDP-mannose-3”,5”-epimerase: an enzyme which performs three chemical reactions at the same active site, J Am Chem Soc 127: 18309–18320.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, S, Lopez M, Gonzalez-Raurich, M, and Alvarez AB, 2005, The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L), Int J Food Sci Nutr 56: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Masaki, KH, Losonczy, KG, Izmirlian, G, Foley, DJ,, Ross, GW, Petrovich, H, Havlik, R, and White LR, 2000, Association of vitamin E and C supplement use with cognitive function and dementia in elderly men, Neurol 54: 1265–1272.

    CAS  Google Scholar 

  • McDermott, JH, 2000, Antioxidant nutrients: current dietary recommendations and research update, J Am Pharmac Assoc 40: 785–799.

    CAS  Google Scholar 

  • Mieda, T, Yabuta, Y, Rapolu, M, Motoki, T, Takeda, T, Yoshimura, K, Ishikawa, T, and Shigeoka, S, 2004, Feedback inhibition of spinach l-galactose dehydrogenase by l-ascorbate, Plant Cell Physiol 45: 1271–1279.

    Article  PubMed  CAS  Google Scholar 

  • Milo, Jr, GR, and Santilli, V.y, 1967, Changes in the ascorbate concentration of Pinto bean leaves accompanying the formation of TMV-induced lesions, Virology 31: 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, NyP, Mishra, RK, and Singhal, GS, 1993, Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors, Plant Physiol 102: 903–910.

    PubMed  CAS  Google Scholar 

  • Munnè-Bosch, S, and Alegre, L, 2002, Interplay between ascorbic acid and lipophilic antioxidant defenses in chloroplasts of water-stressed Arabidopsis plants, FEBS Lett 524: 145–148.

    Article  PubMed  Google Scholar 

  • Nandi, A, Mukhopadhyay, CK, Ghosh, MK, Chattopadhyay, DJ, and Chatterjee, IB, 1997, Evolutionary significance of vitamin C biosynthesis in terrestrial vertebrates, Free Rad Biol Med 22: 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Napoli, C, Williams-Ignarro, S, de Nigris, F, Lerman, LO, Rossi, L, Guarino, C, Mansueto, G, Di Tuoro, F, Pignalosa, O, De Rosa, G, Sica, V, and Ignarro, LJ, 2004, Long-term combined beneficial effects of physical training and metabolic treatment on atherosclerosis in hypercholesterolemic mice, Proc Natl Acad Sci USA 101: 8797–8802.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, F, Kato, M, Hyodo, H, Ikoma, Y, Sugiura, M, and Yano, M, 2003, Ascorbate metabolism in harvested broccoli, J Exp Bot 54: 2439–2448.

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi, M, Fukuyama, R, Minoshima, S, Shimizu, N, and Yagi, K, 1994, Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man, J Biol Chem 269: 13685–13688.

    PubMed  CAS  Google Scholar 

  • Noctor, G, and Foyer, CH, 1998, Ascorbate and glutathione: keeping active oxygen under control, Ann Rev Plant Physiol Plant Mol Biol 49: 249–279.

    Article  CAS  Google Scholar 

  • Nunez-Nesi, A, Carrari, F, Lytovchenko, A, Smith, AMO, Loureiro, ME, Ratcliffe, RG, Sweetlove, LJ, and Fernie AR, 2005, Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants, Plant Physiol 137: 611–622.

    Article  CAS  Google Scholar 

  • Oba, K, Fukui, M, Imai, Y, Iriyama, S, and Nogami, K, 1994, l-galactono-γ-lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue, Plant Cell Physiol 35: 473–478.

    CAS  Google Scholar 

  • Østergaard, J, Persiau, G, Davey, MW, Bauw, G, and Van Montagu, M, 1997, Isolation of a cDNA coding for l-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants, J Biol Chem 48: 30009–30016.

    Article  Google Scholar 

  • Pallanca, JE, and Smirnoff, N, 2000, The control of ascorbic acid synthesis and turnover in pea seedlings, J Exp Bot 51: 669–674

    Article  PubMed  CAS  Google Scholar 

  • Panchuk, II, Volkov, RA, and Schoffl, F, 2002, Heat stress- and heat chock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis, Plant Physiol 129: 838–853.

    Article  PubMed  CAS  Google Scholar 

  • Parle, M, and Dhingra D, 2003, Ascorbic acid: a promising memory-enhancer in mice, J Pharmacol Sci 93: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Passage, E, Norreel, JC, Noack-Fraissignes, P, Sanguedolce, V, Pizant, J, Thirion, X, Robaglia-Schlupp, A, Pellissier, JF, and Fontes, M, 2004, Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease, Nature Med 10: 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Pastori, GM, Kiddle, G, Antoniw, J, Bernard, S, Veljovic-Janovic, S, Verrier, PJ, Graham, N, and Foyer, CH, 2003, Leaf vitamin C content modulates plant defense transcripts and regulate genes that control development through hormone signaling, Plant Cell 15: 939–951.

    Article  PubMed  CAS  Google Scholar 

  • Pavet, V, Olmos, E, Kiddle, G, Mowla, S, Kumar, S, Antoniw, J, Alvarez, ME, and Foyer CH, 2005, Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis, Plant Physiol 139: 1291–1303.

    Article  PubMed  CAS  Google Scholar 

  • Puppo, A, Groten, K, Bastian, F, Carzaniga, R, Soussi, M, Lucas, MM, de Felipe, MR, Harrison, J, Vanacker, H, and Foyer, CH, 2004, Legume nodule senescence: roles for redox and hormone signaling in the orchestration of the natural aging process, New Phytologist 165: 683–701.

    Article  CAS  Google Scholar 

  • Radzio, JA, Lorence, A, Chevone, BI, and Nessler, CL, 2003, L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants, Plant Mol Biol 53: 837–844.

    Article  PubMed  CAS  Google Scholar 

  • Rinne, T, Mutschler, E, Wimmer-Greinecker, G, Moritz, A, and Olbrich, HG, 2000, Vitamins C and E protect isolated cardiomyocytes against oxidative damage, Int J Cardiol 75: 275-281.

    Article  PubMed  CAS  Google Scholar 

  • Rousseaux, MC, Jones, CM, Adams, D, Chetelat, R, Bennett, A, and Powell, A, 2005, QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines, Theor Appl Genet 111: 1396-1408.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki-Sekimoto, Y, Taki, N, Obayashi, T, Aono, M, Matsumoto, F, Sakurai, N, Suzuki, Hirai, MY, Noji, M, Saito, K, Masuda, T, Takamiya, K, Shibata, D, and Ohta, H, 2005, Coordinated activation of metabolic pathways for antioxidants and defense compounds by jasmonates and their roles in stress tolerance in Arabidopsis, Plant J 44: 653–668.

    Article  PubMed  CAS  Google Scholar 

  • Siendones, E, González-Reyes, JA, Santos-Ocaña, C, Navas, P, and Córboba, F, 1999, Biosynthesis of ascorbic acid in kidney bean, l-galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane, Plant Physiol 120: 907–912.

    Article  PubMed  CAS  Google Scholar 

  • Sircelj, H, Tausz, M, Grill, D, and Batic, F, 2005, Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought, J Plant Physiol 162: 1308–1318.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N, 1996, The function and metabolism of ascorbic acid in plants, Ann Bot 78: 661–669.

    Article  CAS  Google Scholar 

  • Smirnoff, N, 2000a, Ascorbic acid: metabolism and functions of a multifaceted molecule, Curr Opin Plant Biol 3: 229–235.

    CAS  Google Scholar 

  • Smirnoff, N, 2000b, Ascorbate biosynthesis and function in photoprotection, Philos Trans R Soc Lond B Biol Sci 355: 1455–1464.

    Article  CAS  Google Scholar 

  • Smirnoff, N, 2001, L-Ascorbic acid biosynthesis, Vitam Horm 61: 241–266.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N, and Pallanca, JE, 1996, Ascorbate metabolism in relation to oxidative stress, Biochem Soc Trans 24: 472–478.

    PubMed  CAS  Google Scholar 

  • Smirnoff, N, and Wheeler, GL, 2000, Ascorbic acid in plants: biosynthesis and function, Crit Rev Plant Sci 19: 267–290.

    Article  CAS  Google Scholar 

  • Smirnoff, N, Conklin, PL, and Loewus, FA, 2001, Biosynthesis of ascorbic acid in plants: a renaissance, Annu Rev Plant Physiol Plant Mol Biol 52: 437–467.

    Article  PubMed  CAS  Google Scholar 

  • TAIR, 2006, http://www arabidopsis org

    Google Scholar 

  • Tabata, K, Oba, K, Suzuki, K, and Esaka, M, 2001, Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for l-galactono-1,4-lactone dehydrogenase, Plant J 27: 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Tabata, K, Takaoka, T, and Esaka, M, 2002, Gene expression of ascorbic acid-related enzymes in tobacco, Phytochem 61: 631–635.

    Article  CAS  Google Scholar 

  • Tamaoki, M, Mukai, F, Asai, N, Nakajima, N, Kubo, A, Aono, M, and Saji, H, 2003, Light-controlled expression of a gene encoding l-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana, Plant Sci 164: 1111–1117.

    Article  CAS  Google Scholar 

  • Tedone, L, Hancock, RD, Alberino, S, Haupt, S, and Viola, R, 2004, Long-distance transport of l-ascorbic acid in potato, BMC Plant Biol 4: 16.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga, T, Miyahara, K, Tabata, K, and Esaka, M, 2005, Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase, Planta 220: 854–863.

    Article  PubMed  CAS  Google Scholar 

  • Ushimaru T, Nakagawa, T, Fujioka, Y, Daicho, K, Naito, M, Yamauchi, Y, Nonaka, H, Amako, K, Yamawaki, K, and Murata, N, 2006, Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress, J Plant Physiol available online Nov, 2005.

    Google Scholar 

  • Valpuesta, V, and Botella, MA, 2004, Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant, Trends Plant Sci 9: 573–577.

    Article  PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic, SD, Pignocchi, C, Noctor, G, and Foyer, CH, 2001, Low ascorbic acid in the vtc-1 mutant in Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system, Plant Physiol 127: 426–435.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, C, Sefkow, M, and Kopka, J, 2003, Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles, Phytochem 62: 887–900.

    Article  CAS  Google Scholar 

  • Watanabe, K, Suzuki, K, and Kitamura, S, 2006, Characterization of a GDP-d-mannose 3”-5”-epimerase from rice, Phytochem 67: 338–346.

    Article  CAS  Google Scholar 

  • Wheeler, GL, Jones, MA, and Smirnoff, N, 1998, The biosynthetic pathway of vitamin C in higher plants, Nature 393: 365-369.

    Article  PubMed  CAS  Google Scholar 

  • Wolucka, BA, Persiau, G, Van Doorsselaere, J, Davey, MW, Demol, H, Vandekerckhove, J, Van Montagu, M, Zabeau, M, and Boerjan, W, 2001, Partial purification and identification of GDP-mannose 3”,5”-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway, Proc Natl Acad Sci USA 98: 14843–14848.

    Article  PubMed  CAS  Google Scholar 

  • Wolucka, BA, and Van Montagu, M, 2003, GDP-Mannose-3”,5”-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants, J Biol Chem 278: 47483–47490.

    Article  PubMed  CAS  Google Scholar 

  • Wolucka, BA, Goossens, A, and Inzé, D, 2005, Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions, J Exp Bot 56: 2527–2538.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, T, Date, C, Kokubo, Y, Yoshiike, N, Matsumura, Y, and Tanaka, H, 2000, Serum vitamin C concentration was inversely associated with subsequent 20-year incidence of stroke in a Japanese rural community: the Shibata study, Stroke 31: 2287–2294.

    PubMed  CAS  Google Scholar 

  • Zou, L, Li, H, Ouyang, B, Zhang, J, and Ye, A, 2006, Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism, Plant Sci, 170: 120–127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lorence, A., Nessler, C.L. (2007). Pathway Engineering of the Plant Vitamin C Metabolic Network. In: Verpoorte, R., Alfermann, A., Johnson, T. (eds) Applications of Plant Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6031-1_8

Download citation

Publish with us

Policies and ethics