Skip to main content

Polyamine Biosynthetic Pathway: A Potential Target for Enhancing Alkaloid Production

Polyamines in alkaloid production

  • Chapter
Applications of Plant Metabolic Engineering

Abstract

Plant metabolic engineering is quite a young science in plants, however, in the past decade it has generated a lot of interest. The reason being that plant secondary metabolites are economically very important as they find applications in pharmaceuticals, insecticides, flavours, fragrances and dyes but their production in plants are in very low quantities. With the development of basic molecular biology and genetic engineering techniques a lot of strategies and tools have become available for targeted improvement of quality and quantity of secondary metabolites. Plant alkaloids constitute the second largest group of secondary metabolites and provide many pharmacologically active compounds. The knowledge of secondary metabolite pathways is however very limited and is the major constraint for successful application of metabolic engineering. Polyamines are low molecular weight polycationic molecules, ubiquitous in nature and are known to play an important role in the regulation of plant growth and development. They also act as precursors of many of the economically important secondary metabolites. Polyamine biosynthetic pathway provides an attractive model for such studies as the various steps in the pathway are very well worked out and most of the genes involved in the pathway have been cloned. Further, polyamine biosynthesis has also been engineered for enhanced alkaloid content by over-expression of ornithine decarboxylase and arginine decarboxylase genes. The present review highlights the prospects of engineering of polyamine biosynthesis for enhanced alkaloid content and also provides a forward looking perspective of this exciting field over the coming years

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alabadi D, Carbonell J (1998) Expression of ornithine decarboxylase is transiently increased by pollination, 2,4-Dichlorophenoxyacetic acid and gibberellic acid in tomato ovaries. Plant Physiol 118:323–328.

    Article  PubMed  CAS  Google Scholar 

  • Bosshardt H, Guggisberg A, Johne S et al. (1978) Ãœber alkaloide der genera Aphelandra und Encephalosphaera (Acanthaceae). Pharm Acta Helv 53:355–357.

    Google Scholar 

  • Bottcher F, Ober D, Hartmann T (1994) Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 72:80–85.

    Google Scholar 

  • Burtin D, Michael AJ (1997) Over-expression of arginine decarboxylase in transgenic plants. Biochem J 325:331–337.

    PubMed  CAS  Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DN et al. (1997) Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol 34:477–483.

    Article  PubMed  CAS  Google Scholar 

  • Chintapakorn Y, Hamill JD (2003) Antisense-mediated down regulation of putrescine \h{N-methyltransferase} activity intransgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53:87–105.

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Laflamme P (2001) The expanding universe of alkaloid biosynthesis. Curr Opin Plant Biol 4:225–233.

    Article  PubMed  Google Scholar 

  • De Luca V, St-Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 4:168–73.

    Article  Google Scholar 

  • Drager B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223.

    Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: Biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66.

    Article  PubMed  CAS  Google Scholar 

  • Fecker LF, Rugenhagen C, Berlin J (1993) Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylasegene. Plant Mol Biol 23: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Feth F, Wagner R, Wagner KG (1986) Regulation in tobacco callus of enzyme activities of the nicotine pathway. I. The route ornithine to methyl pyrroline. Planta 168:402–407.

    Article  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94: 406–410.

    PubMed  CAS  Google Scholar 

  • Gantet P, Memelink J (2002) Transcription factors: Tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23: 563–569.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh B (2000) Polyamines and plant alkaloids. Indian J Expt Bot 38:1086–1091.

    CAS  Google Scholar 

  • Goldmann A, Milat ML, Ducrot PH et al. (1990) Tropane derivatives from Calystegia sepium. Phytochemistry 29:2125–2128.

    Article  CAS  Google Scholar 

  • Goossens A, Hakkinen ST, Laakso I (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100: 8595–8600.

    Article  PubMed  CAS  Google Scholar 

  • Graser G, Hartmann T (1997) Biosynthetic incorporation of the aminobutyl group of spermidine into pyrrolizidine alkaloids. Phytochemistry 45:1591–1595.

    Article  CAS  Google Scholar 

  • Graser G, Hartmann T (2000) Biosynthesis of spermidine, a direct precursor of pyrrolizidine alkaloids in root cultures of Senecio vulgaris L. Planta 211:239–245.

    Article  PubMed  CAS  Google Scholar 

  • Guggisberg A, Hesse M (1983) Putrescine, spermidine, spermine, and related polyamine alkaloids. Alkaloids 22:85–188.

    CAS  Google Scholar 

  • Hamill JD, Robins RJ, Parr AJ et al. (1990) Over-expression of a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Yamada Y (eds) (1992) Tropane alkaloid biosynthesis:regulation and application. In: Proc Annu Penn State Symp Plant Physiol, 7th Rockville: Am. Soc. Plant Physiol Press, pp 122–134.

    Google Scholar 

  • Hashimoto T, Yamada Y (1994) Alkaloid biogenesis: Molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 45:257–285.

    CAS  Google Scholar 

  • Hashimoto T, Tamaki K, Suzuki K et al. (1998) Molecular cloning of plant spermidine synthases. Plant Cell Physiol 39:73–79.

    PubMed  CAS  Google Scholar 

  • Herminghaus S, Tholl D, Rugenhagen C et al. (1996) Improved metabolic action of a bacterial lysine decarboxylase gene in tobacco hairy root cultures by its fusion to a rbcS transitpeptide coding sequence. Transgenic Res 5:193–201.

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Fujita T, Hatano M (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamusalbus. Plant Physiol 100: 826–835.

    PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M (1998) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures.Plant Mol Biol 38:1101–1111.

    Google Scholar 

  • Kaiser A, Sell S, Hehl R (2002) Heterologous expression of a bacterial homospermidine synthase gene in transgenic tobacco: effects on the polyamine pathway. Arch Pharm (Weinheim) 335:143–51.

    Article  CAS  Google Scholar 

  • Katoh A, Ohki H, Inai K et al. (2005) Molecular regulation of nicotine biosynthesis Plant Biotechnol 23: 389–392.

    Google Scholar 

  • Keiner R, Drager B (2000) Calystegine distribution in potato (Solanum tuberosum) tubers and plants. Plant Sci 150:171–179.

    Article  CAS  Google Scholar 

  • Korhonen VP, Halmekyto M, Kauppinen L (1995) Molecular cloning of a cDNA encoding human spermine synthase. DNA Cell Biol 14:841–847.

    PubMed  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor MA et al. (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130.

    Article  Google Scholar 

  • Kumar SV, Sharma ML Rajam MV (2006) Polyamine biosynthetic pathway as a novel target for potential applications in plant biotechnology. Physiol Mol Biol Plants 12:53–58.

    CAS  Google Scholar 

  • Leete E (1979) The alkaloids: alkaloids derived from ornithine, lysine and nicotinic acid, In: EA Bell and BV Charlwood (ed) Encyclopedia of Plant Physiology, New Series, Secondary Plant Products, Vol. 8, Springer-Verlag, Berlin, pp 65–91.

    Google Scholar 

  • Li ZY, Chen SY (2000) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress. Theor Appl Genet 100: 782–788.

    Article  CAS  Google Scholar 

  • Mallik V, Watson MB, Malmberg RL (1996) A tobacco ornithine decarboxylase partial cDNA clone. J Plant Biochem Biotech 5:109–112.

    Google Scholar 

  • Micheal AJ, Furze JM, Rhodes MJC et al. (1996) Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J 314: 24–248.

    Google Scholar 

  • Narula A, Kumar SV, Pande D et al. (2004) Agrobacterium mediated transfer of arginie decarboxylase and ornithine decarboxylase genes to Datura innoxia enhances shoot regeneration and hyoscyamine biosynthesis. J Plant Biochem Biotech 13:127–130.

    Google Scholar 

  • Nezbedová L, Hesse M, Drandarov K et al. (2001) Phenol oxidative coupling in the biogenesis of the macrocyclic spermine alkaloids aphelandrine and orantine in Aphelandra sp. Planta 213: 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis,evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782.

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9: 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Park WK, Lee SH, Park KY (1998) Cloning and characterization of genome clone (Accession no. U64927) encoding S-adenosyl-L-methionine decarboxylase whose gene expression was regulated by light in morning glory (Ipomea nil L.). Plant Physiol 116: 867–872.

    Article  Google Scholar 

  • Perez-Amadour MA, Carbonell J (1995) Arginine decarboxylase and putrescine oxidase in ovaries of Pissum sativum L. changes during ovary senescence and early fruit development. Plant Physiol 107: 865–872.

    Google Scholar 

  • Rajam MV (1997) Polyamines. In: MNV Prasad (ed) Plant Ecophysiology, John Wiley and Sons, New York, pp 343–374.

    Google Scholar 

  • Rajam MV, Weinstein LH, Galston AW (1985) Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc Natl Acad Sci USA 82:6874–6878.

    Article  PubMed  CAS  Google Scholar 

  • Rajam MV, Shoeb F, Yadav JS (1998) Polyamines as modulators of plant regeneration in tissue cultures. In: P.S. Srivastava (ed) Plant Tissue Culture and Molecular Biology: Applications and Prospects, Narosa Publishing House, New Delhi, India, pp 620–641.

    Google Scholar 

  • Rastogi R, Dulson J, Rothstein SJ (1993) Cloning of tomato (Lycopersicum esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol 103:829–834.

    Article  PubMed  CAS  Google Scholar 

  • Sagner S, Shen ZW, Deus-Neumann B et al. (1998) The biosynthesis of lunarine in seeds of Lunaria annua. Phytochemistry 47:375–387.

    Article  CAS  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A et al. (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder G, Schroeder J (1995) cDNA for S-adenosyl-L-methionine decarboxylase from Catharanthus roseus, heterologous expression, identification of the proenzyme processing site, evidence for the presence of both subunits in the active enzyme and a conserved region in the 5’ messenger RNA leader. Eur J Biochem 228: 74–78.

    Article  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283–303.

    Article  PubMed  CAS  Google Scholar 

  • Slocum RD, Flores HE (1991) Uncommon polyamines in plants and other organisms. In: RD Slocum, Flores HE (eds) Biochemistry and Physiology of Polyamines in Plants. CRC Press, Boca Raton, FL pp121–136.

    Google Scholar 

  • Stenzel O, Teuber M, Drager B (2006) Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant. Planta 223: 200–212.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine \h{N-methyltransferase} gene in root pericycle. Plant Cell Physiol 40: 289–297.

    PubMed  CAS  Google Scholar 

  • Taylor MA, Mad Arif SA, Kumar A et al. (1992) Expression and sequence analysis of cDNAs induced during the early stages of tuberization in different organs of potato plant (Solanum tuberosum L.). Plant Mol Biol 20: 641–651.

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Ingersoll RB et al. (1985) Correlation between polyamines and pyrrolonide alkaloids in developing tobacco callus. Plant Physiol 78: 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Hobo T, Shinozaki K (2005) Arabidopsis ADC genes involved in polyamine biosynthesis are essential for seed development. FEBS Letters 579:1557–1564.

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic Engineering of Plant Secondary Metabolism, Kluwer Academic Publishers, pp1–29.

    Google Scholar 

  • Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986) Regulation in tobacco callus of enzyme activities of the nicotine pathway. II. The pyridine nucleotide cycle. Planta 168: 408–413.

    Article  CAS  Google Scholar 

  • Walton NJ, Robins RJ, Rhodes MJC (1988) Perturbation of alkaloid production by cadaverine in hairy root cultures of Nicotiana rustica. Plant Sci 54: 125–131.

    Article  CAS  Google Scholar 

  • Walton NJ, Belshaw NJ (1988) The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep 7:115–118.

    Article  CAS  Google Scholar 

  • Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) arginine decarboxylase by potassium deficiency stress. Plant Physiol 111: 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Ding RX, Chai YR et al. (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Kai GY, Lu BB (2005) Metabolic engineering of tropane alkaloid biosynthesis in plants. J Int Plant Biol 47:136–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bhattacharya, E., Rajam, M.V. (2007). Polyamine Biosynthetic Pathway: A Potential Target for Enhancing Alkaloid Production. In: Verpoorte, R., Alfermann, A., Johnson, T. (eds) Applications of Plant Metabolic Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6031-1_5

Download citation

Publish with us

Policies and ethics