Skip to main content

Polyunsaturated Fatty Acids and Prostate Cancer Metastasis

  • Chapter
Metastasis of Prostate Cancer

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 10))

Abstract

Polyunsaturated fatty acids have been demonstrated to have anticancer activities, on a number of tumor types including prostate cancer. There is evidence that these fatty acids may also influence the metastatic process of cancer. The anti-metastasis function is probably via the effects on more than one aspect of the metastatic process, including angiogenesis, cell adhesion and communication, matrix degradation and invasion, as well as the growth and death of prostate cancer cells. Clinical and epidemiological evidence has also pointed to the involvement of various fatty acids in the development and progression of prostate cancer. Some of the fatty acids have been evaluated for the possible anti-cancer effects in vivo and in limited clinical studies. This chapter summarises the recent development in scientific and clinical research into the possible impact of polyunsaturated fatty acids on prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sinclair HM. The diet of canadian indians and eskimos. Proc Nutr Soc 1953, 12:69–82.

    Google Scholar 

  2. Lancet. Eskimo diets and diseases. Lancet 1983, i:1139–41.

    Google Scholar 

  3. Carroll KK. Dietary factors in hormone dependent caners, In: Nutrition and Cancer. Winick M, ed., New York: John Weley & Sons, 1977.

    Google Scholar 

  4. Horrobin DF, ed. Essential fatty acids, lipid peroxidation, and cancer. In ‘omega-6 essential fatty acids. New York: Wiley-Liss, 1990:351–78.

    Google Scholar 

  5. Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929, 82:345–67.

    CAS  Google Scholar 

  6. Burr GO, Burr MM. On the nature of the fatty acids essential in nutrition. J Biol Chem 1930, 86:587–621.

    CAS  Google Scholar 

  7. Hartop PJ, Prottey C. Changes in transepidermal water loss and the somposition of epidermal lecitin after applications of pure fatty acid triglycerides to the skin of essential fatty acid dificient rats. Br J Dermatol 1976, 95:255–64.

    PubMed  CAS  Google Scholar 

  8. Basnayake V, Sinclair HM. Skin permeability in deficiency of essential fatty acids. J Physiol 1954, 126:55P–6P.

    Google Scholar 

  9. Hansen AE, Holmes SG, Wiese. HF. Fat in the diet in relation to nutrition of the dog. IV. Histologic features of the skin from animals fed diets with and without fat. Texas Rep Biol Med 1951, 9:491– 515.

    CAS  Google Scholar 

  10. Kingery FAJ, Kellum. RE. Essential fatty acid deficiency. Histochemical changes in the skin of rats. Arch Dermatol 1965, 91:272–9.

    Article  PubMed  CAS  Google Scholar 

  11. Nasr AN, Shostak S. Mitotic activity in the skin of mice deficient in EFA. Nature 1965, 207:1935.

    Google Scholar 

  12. Elías PM. The essential fatty acid deficient rodent: Evidence for a direct role for intercellular lipid in barrier function. In: Models in Dermatology, Vol 1. Maibach HI, Lowe NJ, eds, Karger: Basel, 1985:272–85.

    Google Scholar 

  13. Eynard AR, Monis B, Kalinec F, Leguizamón. RO. Increased proliferation of the epithelium of the proximal alimentary tract of EFA-deficient rats. A light and electron microscopy study. Exp Mol Pathol 1982, 36:135–43.

    PubMed  CAS  Google Scholar 

  14. Kramar J, Levine. VE. Influence of fats and fatty acids on capillaries. J Nutr 1953, 50:149–60.

    PubMed  CAS  Google Scholar 

  15. Jiang WG, Eynard AE, Mansel. RE. The pathology of essential fatty acid deficiency, a cell adhesion mediated phenomenon. Med Hypoth 2000, 55:257–62.

    CAS  Google Scholar 

  16. Jiang WG, Puntis MCA, Hallett MB. The molecular and cellular basis of cancer invasion and metastasis and its implications for treatment. Br J Surg 1994, 81:1576–90.

    PubMed  CAS  Google Scholar 

  17. Jiang WG. Regulation of cell adhesion, a central mechanism in the anticancer action of essential fatty acids. Int J Mol Med 1998, 1:621–6.

    PubMed  CAS  Google Scholar 

  18. Horrobin DF. Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 1992, 31:163–94.

    PubMed  CAS  Google Scholar 

  19. Karmali RA, Choi K, Otter G et al. Eicosanoids and metastasis. Experimental aspects in lewis lung carcinoma. Cancer Biochem Biophys 1986, 9:97–104.

    PubMed  CAS  Google Scholar 

  20. Karmali RA, Marsh H, Fuchs C. Effect of omega-3 fatty acids on growth of a rat mammary tumor. J Natl Cancer Inst 1984, 73:457–61.

    PubMed  CAS  Google Scholar 

  21. Begin ME, Ells G, Das UN, Horrobin DF. Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 1986, 77:1053–62.

    PubMed  CAS  Google Scholar 

  22. Jiang WG, Bryce RP, Horrobin DF. Essential fatty acids, the molecular and cellular mechanisms of their anticancer action and clinical implications. Crit Rev Oncol Haematol 1998, 27:179–209.

    CAS  Google Scholar 

  23. Lai PBS, Ross JA, Fearon KCH et al. Cell-cycle arrest and induction of apoptosis in pancreatic- cancer cells exposed to eicosapentaenoic acid in-vitro. Br J Cancer 1996, 74:1375–83.

    PubMed  CAS  Google Scholar 

  24. Cheeseman KH. Lipid peroxidation and cancer. In: DNA, Free Radicals., Halliwell BH, Aruoma OI, eds, Sussex: Ellis Horwood Publishers, 1993:109–44.

    Google Scholar 

  25. Reddy N, Everhart A, Eling T, Glasgow W. Characterization of a 15-lipoxygenase in human breast carcinoma BT-20 cells: Stimulation of 13-HODE formation by TGF(alpha)/EGF. Biochem Biophys Res Commun 1997, 231:111–16.

    PubMed  CAS  Google Scholar 

  26. Bougnoux P, Koscielny S, Chajes V et al. Alpha-linolenic acid content of adipose breast-tissue - a host determinant of the risk of early metastasis in breast-cancer. Br J Cancer 1994, 70:330–4.

    PubMed  CAS  Google Scholar 

  27. Lanson M, Bougnoux P, Besson P et al. N-6 polyunsaturated fatty acids in human breast carcinoma phophatidylethanolamine and early relapse. Br J Cancer 1990, 61:776–8.

    PubMed  CAS  Google Scholar 

  28. Narayan P, Dahiya R. Alterations in sphingomyelin and fatty-acids in human benign prostatic hyperplasia and prostatic-cancer. Biomed Biochim Acta 1991, 50:1099–108.

    PubMed  CAS  Google Scholar 

  29. Fernandezbanares F, Esteve M, Navarro E et al. Changes of the mucosal n3 and n6 fatty-acid status occur early in the colorectal adenoma-carcinoma sequence. Gut 1996, 38:254–9.

    CAS  Google Scholar 

  30. Chaudry A, Mcclinton S, Moffat LEF, Wahle KWJ. Essential fatty-acid distribution in the plasma and tissue phospholipids of patients with benign and malignant prostatic disease. Br J Cancer 1991, 64:1157–60.

    PubMed  CAS  Google Scholar 

  31. Chaudry AA, Wahle KWJ, McClinton S, Moffat LEF. Arachidonic-acid metabolism in benign and malignant prostatic tissue in-vitro - effects of fatty-acids and cyclooxygenase inhibitors. Int J Cancer 1994, 57:176–80.

    PubMed  CAS  Google Scholar 

  32. Nakazawa I, Iwaizumi M, Ohuchi K. A difference in prostaglandin-producing ability between cancer- cells metastasized into liver and kidney. Tohoku J Exp Med 1991, 165:299–304.

    PubMed  CAS  Google Scholar 

  33. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon-cancer. J Lab Clin Med 1993, 122:518–23.

    PubMed  CAS  Google Scholar 

  34. Shimizu S, Yamane M, Abe A et al. Omega-hydroxylation of docosahexaenoic acid or arachidonic-acid in human colonic well-differentiated adenocarcinoma homogenate. Biochim Biophys Acta 1995, 1256:293–6.

    PubMed  Google Scholar 

  35. Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J Biol Chem 1999, 274:471–7.

    PubMed  CAS  Google Scholar 

  36. Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 1999, 274:37333–9.

    Google Scholar 

  37. Hansen-Petrik MB, McEntee MF, Johnson BT, Obukowicz G, Masferrer J, Zweifel B et al. Selective inhibition of delta-6 desaturase impedes intestinal tumorigenesis. Cancer Lett 2002, 175:157–63.

    PubMed  CAS  Google Scholar 

  38. Alvares K, Carrillo A, Yuan PM et al. Identification of cytosolic peroxisome proliferator binding-protein as a member of the heat-shock protein HSP70 family. Proc Natl Acad Sci USA 1990, 87:5293–7.

    PubMed  CAS  Google Scholar 

  39. Issemann I, Green S. Activation of a member of the sterioid hormone receptor superfamily by peroxisome proliferators. Nature 1990, 347:645–9.

    PubMed  CAS  Google Scholar 

  40. Beck F, Plummer S, Senior PV et al. The ontogeny of peroxisome-proliferator-activated receptor gene- expression in the mouse and rat. Proc R Soc Lond 1992, 247:83–7.

    CAS  Google Scholar 

  41. Zhang BW, Marcus SL, Sajjadi FG et al. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-coa hydratase 3-hydroxyacyl-coa dehydrogenase. Proc Natl Acad Sci USA 1992, 89:7541–5.

    PubMed  CAS  Google Scholar 

  42. Nunez SB, Medin JA, Braissant O et al. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor. Mol Cell Endocrinol 1997, 127:27–40.

    PubMed  CAS  Google Scholar 

  43. Pineau T, Hudgins WR, Liu L et al. Activation of a human peroxisome proliferator-activated receptor by the antitumor agent phenylacetate and its analogs. Biochem Pharmacol 1996, 52:659–67.

    PubMed  CAS  Google Scholar 

  44. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Bio Chem 1997, 272:3406–10.

    CAS  Google Scholar 

  45. Jump DB, Clarke SD. Regulation of gene expression by dietary fat. Annu Rev Nutr 1999, 19:63–90.

    PubMed  CAS  Google Scholar 

  46. Forman BM, Chen J, Evans RM. Hydropipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator activated receptors and. Proc Natl Acad Sci USA 1997, 94:4312–17.

    PubMed  CAS  Google Scholar 

  47. Kliewer SA, Sundeth SS, Jones SA, Brown PJ, Wisely GB, Koble CS et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator activated receptor and. Proc Natl Acad Sci USA 1997, 94:4318–23.

    PubMed  CAS  Google Scholar 

  48. Krey G, Braissant O, Lhorset F, Kalkhoven E, Perroud M, Parker MG, Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 1997, 11:779–91.

    PubMed  CAS  Google Scholar 

  49. Jiang CY, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998, 391:82–6.

    PubMed  CAS  Google Scholar 

  50. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998, 391:79–82.

    PubMed  CAS  Google Scholar 

  51. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahl W. The ppara leukotriene B4 pathway to inflammation control. Nature 1996, 384:39–43.

    PubMed  CAS  Google Scholar 

  52. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu G-protein-coupled receptor for leukotriene that mediates chemotaxis. TAB-4. Nature 1997, 387:620–4.

    PubMed  CAS  Google Scholar 

  53. Ren B, Thelen AP, Peters JM, Gonzalez FJ, Jump DB. Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor alpha. J Biol Chem 1997, 272:26827–32.

    PubMed  CAS  Google Scholar 

  54. Kilgore MW, Tate PL, Rai S, Sengoku E, Price TM. MCF-7 and T47D human breast cancer cells contain a functional peroxisomal response. Mol Cell Endocrinol 1997, 129:229–35.

    PubMed  CAS  Google Scholar 

  55. Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Peroxisome proliferator activated receptor-γ mediates the effects of gamma linolenic acid in cancer cells. Prostaglandins Leukot Essent Fatty Acids 2000, 62:119–27.

    PubMed  CAS  Google Scholar 

  56. Hart IR, Goode NT, Wilson RE. Molecular aspects of the metastatic cascade. Biochim Biophys Acta 1989, 989:65–84.

    PubMed  CAS  Google Scholar 

  57. Johanning GL, Lin TY. Unsaturated fatty-acid effects on human breast-cancer cell-adhesion. Nutr Cancer 1995, 24:57–66.

    Article  PubMed  CAS  Google Scholar 

  58. Meterissian SH, Forse RA, Steele GD, Thomas P. Effect of membrane free fatty-acid alterations on the adhesion of human colorectal-carcinoma cells to liver macrophages and extracellular-matrix proteins. Cancer Lett 1995, 89:145–52.

    PubMed  CAS  Google Scholar 

  59. Rose DP, Connolly JM, Liu XH. Effects of linoleic-acid on the growth and metastasis of 2 human breast-cancer cell-lines in nude-mice and the invasive capacity of these cell-lines in-vitro. Cancer Res 1994, 54:6557–62.

    PubMed  CAS  Google Scholar 

  60. Varner JA, Cheresh DA. Integrins and cancer. Curr Opin Cell Biol 1996, 8:724–30.

    PubMed  CAS  Google Scholar 

  61. Furukawa T, Watanabe M, Kumota T et al. Significance of in vitro attachment of human colon cancer to extracellular matrix proteins in experimental and clinical liver metastasis. J Surg Oncol 1993, 53:10–16.

    PubMed  CAS  Google Scholar 

  62. Giancotti FG, Mainiero F. Integrin mediated adhesion and signlling in tumorigenesis. Biochim Biophys Acta 1994, 1198:47–64.

    PubMed  CAS  Google Scholar 

  63. Johanning GL. Modulation of breast cancer cell adhesion by unsaturated fatty acids. Nutrition 1996, 12:810–16.

    PubMed  CAS  Google Scholar 

  64. Rose DP, Connolly JM, Liu XH. Effects of linoleic-acid and gamma-linolenic acid on the growth and metastasis of a human breast-cancer cell-line in nude-mice and on its growth and invasive capacity in-vitro. Nutr Cancer 1995, 24:33–45.

    Article  PubMed  CAS  Google Scholar 

  65. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast-cancer cells in nude-mice. J Natl Cancer Inst 1995, 87:7587–92.

    Google Scholar 

  66. Hubbard NE, Erickson KL. Effect of dietary linoleic acid level on lodgement, proliferation and survival of mammary tumor metastases. Cancer Lett 1989, 44:117.

    PubMed  CAS  Google Scholar 

  67. Jiang WG, Hiscox S, Puntis MCA et al. Gamma linolenic acid (GLA) inhibits tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin and tumour cell-matrix interaction. Int J Oncol 1996, 8:583–7.

    CAS  Google Scholar 

  68. duToit PJ, Vanaswegen CH, Duplessis DJ. The effect of essential fatty-acids on growth and urokinase-type plasminogen-activator production in human prostate DU-145 cells. Prostaglandins Leukot Essent Fatty Acids 1996, 55:173–7.

    CAS  Google Scholar 

  69. Reich R, Royce L, Martin GR. Eicosapentaenoic acid reduces the invasive and metastatic activities of malignant tumor cells. Biochem Biophys Res Commun 1989, 160:559–64.

    PubMed  CAS  Google Scholar 

  70. Kariko D, Rosenbaum H, Kuo A et al. Stimulatory effect of unsaturated fatty acids on the level of plasminogen activator inhibitor I mRNA in cultured human endothelial cells. FEBS Lett 1995, 361:118–22.

    PubMed  CAS  Google Scholar 

  71. Liu XH, Connolly JM, Rose DP. Eicosanoids as mediators of linoleic acid-stimulated invasion and type-IV collagenase production by a metastatic human breast-cancer cell-line. Clin Exp Metastasis 1996, 14:145–52.

    PubMed  CAS  Google Scholar 

  72. Liu XH, Rose DP. Suppression of type-IV collagenase in MDA-MB-435 human breast-cancer cells by eicosapentaenoic acid in-vitro and in-vivo. Cancer Lett 1995, 92:21–6.

    PubMed  CAS  Google Scholar 

  73. Zou Z, Anisowicz A, Hendrix MJC et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994, 263:526–9.

    PubMed  CAS  Google Scholar 

  74. Hopkins PCR, Whisstock J, Sager R. Function of maspin. Science 1994, 265:1893–4.

    PubMed  CAS  Google Scholar 

  75. Sheng S, Carey J, Seftor EA et al. Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proc Natl Acad Sci USA 1996, 93:11669–74.

    PubMed  CAS  Google Scholar 

  76. Jiang WG, Hiscox S, Horrobin DF et al. Expression of maspin in cancer cells and its regulation by gamma linolenic acid. Biochem Biophys Res Commun 1997, 237:639–44.

    PubMed  CAS  Google Scholar 

  77. Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Gamma linolenic acid regulates gap junction communications in endothelial cells and their interaction with tumour cells. Prostaglandins Leukot Essent Fatty Acids 1997, 56:307–16.

    PubMed  CAS  Google Scholar 

  78. Weber C, Erl W, Pietsch A, Danesch U, Weber PC. Docosahexaenoic acid selectively attenuates induction of vascular cell adhesion molecule -1 and subsequent monocytic cell adhesion to human endothelial cells stimulated by tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 1995, 15:622.

    PubMed  CAS  Google Scholar 

  79. De Caterina R, Cybulsky MI, Clinton SK et al. The omega-3 fatty acid docosahexaenoate reduces cytokine induced expression of proatherogenic and proinflammatory proteins in human endothelail cells. Atheroscler Thromb 1994, 14:1829.

    Google Scholar 

  80. De Caterina R, Cybulsky MA, Clinton SK et al. Omega -3 fatty acids and endothelial leukocyte adhesion molecules. Prostaglandins Leukot Essen Fatty Acids 1995, 52:191–5.

    Google Scholar 

  81. Jiang WG, Hiscox S, Hallett MB et al. Inhibition of membrane ruffling and ezrin translocation by gamma linolenic acid. int J Oncol 1996, 9:279–84.

    CAS  Google Scholar 

  82. Hennig B, Lipke DW, Boissonneault GA, Ramasamy S. Role of fatty-acids and eicosanoids in modulating proteoglycan metabolism in endothelial-cells. Prostaglandins Leukot Essent Fatty Acids 1995, 53:315–24.

    PubMed  CAS  Google Scholar 

  83. McCarty MF. Fish-oil MAY impede tumor angiogenesis and invasiveness by down-regulating protein-kinase-c and modulating eicosanoid production. Med Hypoth 1996, 46:107–11.

    CAS  Google Scholar 

  84. Cai J, Jiang WG, Mansel RE. Inhibition of vascular endothelial cell motility and angiogenesis by gamma linolenic acid. Prostaglandins Leukot Essent Fatty Acids 1997, 57:247.

    Google Scholar 

  85. Ormerod LD, Garsd A, Abelson MD et al. Effects of altering the eicosanoid precursor pool on neovascularization and inflammation in the alkali-burned rabbit cornea. Am J Pathol 1990, 137:1243–52.

    PubMed  CAS  Google Scholar 

  86. Kanayasu T, Morita I, Nakao-Hayashi J et al. Eicosapentaenoic acid inhibits tube formation of vascular endothelial cells in vitro. Lipid 1991, 26:271–6.

    CAS  Google Scholar 

  87. Cai J, Jiang WG, Mansel RE. Gamma linolenic acid inhibits expression of VE-cadherin and tube formation in human vascular endothelial cells. Biochem Biophys Res Commun 1999, 258:113–18.

    PubMed  CAS  Google Scholar 

  88. Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Gamma linolenic acid regulates gap junction communications in endothelial cells and their interaction with tumour cells. Prostaglandins Leukot Essent Fatty Acids 1997, 56:307–16.

    PubMed  CAS  Google Scholar 

  89. Giovannucci E, Rimm EB, Colditz GA, Stampfer MJ, Ascherio A, Chute CC, Willett WC. A prospective-study of dietary-fat and risk of prostate-cancer. J Natl Cancer Inst 1993, 85:1571–9.

    PubMed  CAS  Google Scholar 

  90. Gann PH, Hennekens CH, Sacks FM, Grodstein F, Giovannucci EL, Stampfer MJ. Prospective-study of plasma fatty-acids and risk of prostate-cancer. J Natl Cancer Inst 1994, 86:281–6.

    PubMed  CAS  Google Scholar 

  91. Michaud DS, Augustsson K, Rimm EB, Stampfer MJ, Willett WC, Giovannucci E. A prospective study on intake of animal products and risk of prostate cancer. Cancer Causes Control 2001, 12:557–67.

    PubMed  CAS  Google Scholar 

  92. Godley PA, Campbell MK, Miller C, Gallagher P, Martinson FE, Mohler JL, Sandler RS. Correlation between biomarkers of omega-3 fatty acid consumption and questionnaire data in african american and causcasian united states males with and without prostatic carcinoma. Cancer Epidemiol. Biomarkers Prev 1996, 5:115–19.

    PubMed  CAS  Google Scholar 

  93. Godley PA, Campbell MK, Gallagher P, Martinson FEA, Mohler JL, Sandler RS. Biomarkers of essential fatty acid consumption and risk of prostatic carcinoma. Cancer Epidemiol Biomarker Prev 1996, 5:889–95.

    CAS  Google Scholar 

  94. Bakker N, vantVeer P, Zock PL, Aro A, DelgadoRodiguez M, GomezAracena J et al. Adipose fatty acids and cancers of the breast, prostate and colon: An ecological study. Int J Cancer 1997, 72:587–91.

    PubMed  CAS  Google Scholar 

  95. Harvei S, Bjerve KS, Tretli S, Jellum E, Robsahm TE, Vatten L. Prediagnostic level of fatty acids in serum phospholipids: Omega-3 and omega-6 fatty acids and the risk of prostate cancer. Int J Cancer 1997, 71:545–51.

    PubMed  CAS  Google Scholar 

  96. Zock PL, Katan MB. Linoleic acid intake and cancer risk: A review and meta-analysis. Am J Clin Nutr 1998, 68:142–53.

    PubMed  CAS  Google Scholar 

  97. Yang YJ, Lee SH, Hong SJ, Chung BC. Comparison of fatty acid profiles in the serum of patients with prostate cancer and benign prostatic hyperplasia. Clin. Biochem 1999, 32:405–9.

    PubMed  CAS  Google Scholar 

  98. Norrish AE, Skeaff CM, Arribas GLB, Sharpe SJ, Jackson RT. Prostate cancer risk and consumption of fish oils: A dietary biomarker-based case-control study. Br J Cancer 1999, 81:1238–42.

    PubMed  CAS  Google Scholar 

  99. Rose DP, Connolly JM. Effects of fatty-acids and eicosanoid synthesis inhibitors onthe growth of 2 human prostate-cancer cell-lines. Prostate 1991, 18:243–54.

    PubMed  CAS  Google Scholar 

  100. Connolly JM, Rose DP. Interactions between epidermal growth factor-mediated autocrine regulation and linoleic acid-stimulated growth of a human prostate-cancer cell-line. Prostate 1992, 20:151–8.

    PubMed  CAS  Google Scholar 

  101. Griffiths G, Jones HE, Eaton CL, Stobart AK. Effect of n-6 polyunsaturated fatty acids on growth and lipid composition of neoplastic and non-neoplastic canine prostate epithelial cell cultures. Prostate 1997, 31:29–36.

    PubMed  CAS  Google Scholar 

  102. Motaung E, Prinsloo SE, van Aswegen CH, du Toit PJ, Becker PJ, du Plessis DJ. Cytotoxicity of combined essential fatty acids on a human prostate cancer cell line. Prostaglandins Leukot Essent Fatty Acids 1999, 99:331–7.

    Google Scholar 

  103. Hughes-Fulford M, Chen YF, Tjandrawinata RR. Fatty acid regulates gene expression and growth of human prostate cancer PC-3 cells. Carcinogenesis 2001, 22:701–7.

    PubMed  CAS  Google Scholar 

  104. Pandian SS, Sneddon AA, Bestwick CS, McClinton S, Grant I, Wahle KWJ, Heys SD. Fatty acid regulation of protein kinase C isoforms in prostate cancer cells. Biochem Biophys Res Commun 2001, 283:806–12.

    PubMed  CAS  Google Scholar 

  105. Chung BH, Mitchell SH, Zhang JS, Young CYF. Effects of docosahexaenoic acid and eicosapentaenoic acid on androgen-mediated cell growth and gene expression in LNCaP prostate cancer cells. Carcinogenesis 2001, 22:1201–6.

    PubMed  CAS  Google Scholar 

  106. Ghosh J, Myers CE. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA 1998, 98:13182–7.

    Google Scholar 

  107. CE, Ghosh J. Lipoxygenase inhibition in prostate cancer. Eur Urol 1999, 35:395–8.

    PubMed  CAS  Google Scholar 

  108. Cave. WT. Dietary n-3 (omega-3) polyunsaturated fatty-acid effects on animal tumorigenesis. FASEB J 1991, 5:2160–6.

    PubMed  CAS  Google Scholar 

  109. Tjandrawinata RR, HughesFulford M. Up-regulation of cyclooxygenase-2 by product-prostaglandin E-2. Adv Exp Med Biol 1997, 407:163–70.

    PubMed  CAS  Google Scholar 

  110. Samid D, Wells M, Greene ME, Shen WY, Palmer CAN, Thibault A. Peroxisome proliferator-activated receptor gamma as a novel target in cancer therapy: Binding and activation by an aromatic fatty acid with clinical antitumor activity. Clin Cancer Res 2000, 6:933–41.

    PubMed  CAS  Google Scholar 

  111. Shappell SB, Gupta RA, Manning S, Whitehead R, Boeglin WE, Schneider C et al. 15s-hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma, inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res 2001, 61:497–503.

    PubMed  CAS  Google Scholar 

  112. Collett GP, Betts AM, Johnson MI, Pulimood AB, Cook S, Neal DE, Robson CN. Peroxisome proliferator-activated receptor alpha is an androgen-responsive gene in human prostate and is highly expressed in prostatic adenocarcinoma. Clin Cancer Res 2000, 6:3241–8.

    PubMed  CAS  Google Scholar 

  113. Nwankwo JO, Robbins MEC. Peroxisome proliferator-activated receptor-gamma expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandinns Leukot Essent Fatty Acids 2001, 64:241–51.

    CAS  Google Scholar 

  114. Freeman VL, Meydani M, Yong S, Pyle J, Flanigan RC, Waters WB, Wojcik EM. Prostatic levels of fatty acids and the histopathology of localized prostate cancer. J. Urol 2000, 164:2168–72.

    PubMed  CAS  Google Scholar 

  115. De Stefani E, Deneo-Pellegrini H, Boffetta P, Ronco A, Mendilaharsu M. Alpha-linolenic acid and risk of prostate cancer: A case-control study in uruguay. Cancer Epidemiol Biomarkers Prev 2000, 9:335–8.

    PubMed  Google Scholar 

  116. Ramon JM, Bou R, Romea S, Alkiza ME, Jacas M, Ribes J, Oromi J. Dietary fat intake and prostate cancer risk: A case-control study in spain. Cancer Causes Control 2000, 11:679–85.

    PubMed  CAS  Google Scholar 

  117. Newcomer LM, King IB, Wicklund KG, Stanford JL. The association of fatty acids with prostate cancer risk. Prostate 2001, 47:262–8.

    PubMed  CAS  Google Scholar 

  118. Fearon KCH, Falconer JS, Ross JA, Carter DC, Hunter JO, Reynolds PD, Tuffnell Q. An open-label phase I/II dose escalation study of the treatment of pancreatic cancer using lithium gammalinolenate. Anticancer Res 1995, 16:867–74.

    Google Scholar 

  119. Barber MD, Fearon KCH, Tisdale MJ, McMillan DC, Ross JA. Effect of a fish oil-enriched nutritional supplement on metabolic mediators in patients with pancreatic cancer cachexia. Nutr Cancer 2001, 40:118–24.

    PubMed  CAS  Google Scholar 

  120. Johnson CD, Puntis M, Davidson N, Todd S, Bryce R. Randomized, dose-finding phase III study of lithium gamolenate in patients with advanced pancreatic adenocarcinoma. Br J Surg 2001, 88:662–8.

    PubMed  CAS  Google Scholar 

  121. Lockwood K, Moesgaard S, Hanioka T, Folkers K. Apparent partial remission of breast-cancer in high-risk patients supplemented with nutritional antioxidants, essential patty acids and coenzyme q(10). Mol Asp Med 1994, 15:231–40.

    Google Scholar 

  122. Das UN, Prasad VVSK, Reddy DR. Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 1995, 94:147–55.

    PubMed  CAS  Google Scholar 

  123. Reddy DR, Prassad VSSV, Das UN. Intratumoural injection of gamma leinolenic acid in malignant gliomas. J Clin Neurosci 1998, 5:36–9.

    CAS  PubMed  Google Scholar 

  124. Anti M, Armelao F, Marra G et al. Effects of different doses of fish-oil on rectal cell-proliferation in patients with sporadic colonic adenomas. Gastroenterology 1994, 107:1709–18.

    PubMed  CAS  Google Scholar 

  125. McIllmurray MB, Turkie W. Controlled trial of gamma linolenic acid in Duke’s colorectal cancer. Br Med J 1987, 294:1260.

    Article  CAS  Google Scholar 

  126. Vandermerwe CF, Booyens J, Katzeff IE. Oral gamma-linolenic acid in 21 patients with untreatable malignancy- an ongoing pilot open clinical-trial. Br J Clin Pract 1987, 41:907–15.

    CAS  Google Scholar 

  127. Vandermerwe CF, Booyens J. Essential fatty-acids and their metabolic intermediates as cytostatic agents - the use of evening primrose oil (linoleic and gamma-linolenic acid) in primary liver-cancer - a double-blind placebo controlled trial. S Afr Med J 1987, 72:79.

    Google Scholar 

  128. Vandermerwe CF, Booyens J, Joubert HF et al. The effect of gamma-linolenic acid, an in vitro cytostatic substance contained in evening primrose oil, on primary liver-cancer - a double-blind placebo controlled trial. Prostaglandins 1990, 40:199–202.

    CAS  Google Scholar 

  129. Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology 2001 58:283–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jiang, W.G. (2008). Polyunsaturated Fatty Acids and Prostate Cancer Metastasis. In: Ablin, R.J., Mason, M.D. (eds) Metastasis of Prostate Cancer. Cancer Metastasis – Biology and Treatment, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5847-9_4

Download citation

Publish with us

Policies and ethics