Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 191))

Abstract

Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200–250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5°C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was about 30 m. No long-term changes in the Secchi disk clarity were observed. Average turbidity of the water column (2–550 m) between June and September from 1991 to 2000 as measured by a transmissometer ranged between 88.8% and 90.7%. The depth of 1% of the incident solar radiation during thermal stratification varied annually between 80 m and 100 m. Both of these measurements provided additional evidence about the exceptional clarity of Crater Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. R., K. P. Burnham & W. L. Thompson, 2000. Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64: 912–923.

    Article  Google Scholar 

  • Bacon, C. R. & M. A. Lamphere, 1990. The geological setting of Crater Lake, Oregon. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosystem Study. Pacific Division, American Association for the Advancement of Science, San Francisco, CA, 19–27.

    Google Scholar 

  • Bacon, C. R., J. V. Gardner, L. A. Mayer, M. W. Buktenica, P. Dartnell, D. W. Ramsey & J. E. Robinson, 2002. Morphology, volcanism, and mass wasting in Crater Lake, Oregon. Geological Society of America Bulletin 114: 675–692.

    Article  Google Scholar 

  • Barber Jr., J. H. & C. H. Nelson, 1990. Sedimentary history of Crater Lake caldera, Oregon. 1990. In Drake E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosystem Study. Pacific Division, American Association for the Advancement of Science, San Francisco, CA, 29–39.

    Google Scholar 

  • Berger, J. O. & T. Sellke, 1987. Testing a point null hypothesis: the irreconcilability of p values and evidence. Journal of the American Statistical Association 82: 112–122.

    Article  Google Scholar 

  • Byrne, J. V., 1965. Morphology of Crater Lake, Oregon. Limnology and Oceanography 10: 462–465.

    Article  Google Scholar 

  • Collier, R., J. Dymond & J. McManus, 1993. Studies of hydrothermal processes. In Larson, G., C. D. McIntire & R. W. Jacobs (eds), Crater Lake Limnological Studies, Final Report, Technical Report NPS/PNROSU/NRTR — 93/03: 205–213.

    Google Scholar 

  • Crawford, G. B. & R. W. Collier, 1997. Observations of a deep mixing event in Crater Lake, Oregon. Limnology and Oceanography 42: 299–306.

    Article  Google Scholar 

  • Crawford, G. B. & R. W. Collier, 2007. Long-term observations of deepwater renewal in Crater Lake, Oregon. Hydrobiologia 574: 47–68.

    Article  CAS  Google Scholar 

  • Dymond, J. & R. Collier, 1990. The chemistry of Crater Lake sediments: definition of sources and implications for hydrothermal activity. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosystem Study. Pacific Division, American Association for the Advancement of Science, San Francisco, CA, 41–60.

    Google Scholar 

  • Dymond, J., R. Collier & J. McManus, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.

    Article  CAS  Google Scholar 

  • Goldman, C. R., 1988. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe, California-Nevada. Limnology and Oceanography 33: 1321–1333.

    CAS  Google Scholar 

  • Groeger, A., 2007. Nutrient Limitation in Crater Lake, Oregon. Hydrobiologia 574: 205–216.

    Article  CAS  Google Scholar 

  • Hargreaves, B. R., 2003. Water column optics and penetration of UVR. In. Helbling E. W. & H. E. Zagarese (eds), UV Effects in Aquatic Organisms and Ecosystems, Comprehensive Series in Photochemical and Photobiological Sciences. Royal Society of Chemistry, Cambridge, UK, 59–105.

    Chapter  Google Scholar 

  • Hargreaves, B. R., S. F. Girdner, M. W. Buktenica, R. W. Collier, E. Urback & G. L. Larson, 2007. Ultraviolet Radiation and Bio-optics in Crater Lake, Oregon. Hydrobiologia 574: 107–140.

    Article  Google Scholar 

  • Hintze, J. L., 1998. Number Cruncher Statistical System (NCSS 2000). Kaysville, UT.

    Google Scholar 

  • Hoffman, F. O., 1969. The horizontal distribution and vertical migration of the limnetic zooplankton in Crater Lake, Oregon. M.S. Thesis, Oregon State University, Corvallis. 60 pp.

    Google Scholar 

  • Horne, A. J. & C. R. Goldman, 1994. Limnology. 2nd edn. McGraw-Hill, Inc. NY, 592 pp.

    Google Scholar 

  • Johnson, D. M., R. R. Petersen, D. R. Lycan, J. W. Sweet, M. E. Neuhaus & A. L. Schaedel, 1985. Atlas of Oregon Lakes. Oregon State University Press, Corvallis, Oregon, 317 pp.

    Google Scholar 

  • Larson, D. W, 1984. The Crater Lake study: detection of possible optical deterioration of a rare, unusually deep caldera lake in Oregon, USA. Verhandlungen. Internationale Vereinigung fur theoretische und angewandte Limnologie 22: 513–517.

    Google Scholar 

  • Larson, G. L. & M. W. Buktenica, 1998. Variability of Secchi disk readings in an exceptionally clear and deep caldera lake. Archiv fur Hydrobiologie 141: 377–388.

    Google Scholar 

  • Larson, G. L., C. D. McIntire, M. Hurley & M. W. Buktenica, 1996. Temperature, water chemistry, and optical properties of Crater Lake. Lake and Reservoir Management 12: 230–247.

    Article  CAS  Google Scholar 

  • McIntire, C. D., 1973. Diatom associations in Yaquina Estuary, Oregon: a multivariate analysis. American Naturalist 129: 97–121.

    Google Scholar 

  • McIntire, C. D., G. L. Larson & R. E. Truitt, 2007. Taxonomic Composition and Production Dynamics of Phytoplankton Assemblages in Crater Lake, Oregon. Hydrobiologia 574: 179–204.

    Article  CAS  Google Scholar 

  • McManus, J., R. W. Collier & J. Dymond, 1993. Mixing processes in Crater Lake, Oregon. Journal of Geophysical Research 98: 18295–18307.

    Article  Google Scholar 

  • Nathenson, M. & J. M. Thompson, 1990. Chemistry of Crater Lake, Oregon, and nearby springs in relation to weathering. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosystem Study. Pacific Division, American Association for the Advancement of Science, San Francisco, CA, 115–126.

    Google Scholar 

  • Nathenson, M., C. R. Bacon & D. W. Ramsey, 2007. Subaqueous Geology and a Filling Model for Crater Lake, Oregon. Hydrobiologia 574: 13–27.

    Article  Google Scholar 

  • Nelson, C. H., C. R. Bacon, S. W. Robinson, D. P. Adam, J. P. Bradbury, J. H. Barber Jr., D. Schwartz & G. Vagenas, 1994. The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon: evidence for small caldera evolution. Geological Society of America Bulletin 106: 684–704.

    Article  Google Scholar 

  • Nelson, P. O., J. F. Reilly & G. L. Larson, 1996. Chemical solute mass balance of Crater Lake, Oregon. Lake and Reservoir Management 12: 248–258.

    CAS  Google Scholar 

  • Phillips, K. N., 1968. Hydrology of Crater Lake, East Lake, and Davis Lake, Oregon. US Geological Survey Water Supply Paper 1859-E, 60 pp.

    Google Scholar 

  • Redmond, K. T., 1990. Crater Lake climate and lake level variability. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosystem Study. Pacific Division, American Association for the Advancement of Science, San Francisco, CA, 127–141.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. 2nd edn. Saunders College Publishing, PA, 767 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Larson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Larson, G.L., Hoffman, R.L., McIntire, D.C., Buktenica, M.W., Girdner, S.F. (2007). Thermal, chemical, and optical properties of Crater Lake, Oregon. In: Larson, G.L., Collier, R., Buktenica, M.W. (eds) Long-term Limnological Research and Monitoring at Crater Lake, Oregon. Developments in Hydrobiology, vol 191. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5824-0_5

Download citation

Publish with us

Policies and ethics