Skip to main content

Prikry-Type Forcings

  • Chapter
  • First Online:
Handbook of Set Theory

Abstract

One of the central topics of set theory since Cantor has been the study of the power function κ→2κ. The basic problem is to determine all the possible values of 2κ for a cardinal κ. Paul Cohen proved the independence of CH and invented the method of forcing. Easton building on Cohen’s results showed that the function κ→2κ for regular κ can behave in any prescribed way consistent with the Zermelo-König inequality, which entails cf (2κ)>κ. This reduces the study to singular cardinals.

It turned out that the situation with powers of singular cardinals is much more involved. Thus, for example, a remarkable theorem of Silver states that a singular cardinal of uncountable cofinality cannot be the first to violate GCH. The Singular Cardinal Problem is the problem of finding a complete set of rules describing the behavior of the function κ→2κ for singular κ’s.

There are three main tools for dealing with the problem: pcf theory, inner model theory and forcing involving large cardinals. The purpose of this chapter is to present the main forcing tools for dealing with powers of singular cardinals.

The writing of this chapter was partially supported by the Israel Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Uri Abraham and Menachem Magidor. Cardinal arithmetic. Chapter 14 in this Handbook. 10.1007/978-1-4020-5764-9_15.

  2. Uri Abraham and Saharon Shelah. Forcing closed unbounded sets. The Journal of Symbolic Logic, 48(3):643–657, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  3. Arthur W. Apter. Patterns of compact cardinals. Annals of Pure and Applied Logic, 89:101–115, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. Arthur W. Apter and Moti Gitik. The least measurable can be strongly compact and indestructible. The Journal of Symbolic Logic, 63(4):1404–1412, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  5. James E. Baumgartner. Iterated forcing. In Surveys in Set Theory, volume 87 of London Mathematical Society Lecture Note Series, pages 1–59. Cambridge University Press, Cambridge, 1983.

    Google Scholar 

  6. Maxim R. Burke and Menachem Magidor. Shelah’s pcf theory and its applications. Annals of Pure and Applied Logic, 50(3):207–254, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  7. Paul Cohen. The independence of the continuum hypothesis. Proceeding of the National Academy of Sciences USA, 50:1143–1148, 1963.

    Article  Google Scholar 

  8. James Cummings. Iterated forcing and elementary embeddings. Chapter 12 in this Handbook. 10.1007/978-1-4020-5764-9_13

  9. James Cummings. A model in which GCH holds at successors but fails at limits. Transactions of the American Mathematical Society, 329(1):1–39, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. James Cummings and W. Hugh Woodin. A book on Radin forcing. In preparation.

    Google Scholar 

  11. William B. Easton. Powers of regular cardinals. Annals of Mathematical Logic, 1:139–178, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  12. Matthew Foreman and W. Hugh Woodin. The generalized continuum hypothesis can fail everywhere. Annals of Mathematics (2), 133(1):1–35, 1991.

    Article  MathSciNet  Google Scholar 

  13. Moti Gitik. Changing cofinalities and the nonstationary ideal. Israel Journal of Mathematics, 56(3):280–314, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  14. Moti Gitik. On the Mitchell and Rudin-Keisler orderings of ultrafilters. Annals of Pure and Applied Logic, 39(2):175–197, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  15. Moti Gitik. The negation of the singular cardinal hypothesis from o(κ)=κ ++. Annals of Pure and Applied Logic, 43(3):209–234, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  16. Moti Gitik. On closed unbounded sets consisting of former regulars. The Journal of Symbolic Logic, 64(1):1–12, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. Moti Gitik. Blowing up power of a singular cardinal—wider gaps. Annals of Pure and Applied Logic, 116(1–3):1–38, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  18. Moti Gitik. On gaps under GCH type assumptions. Annals of Pure and Applied Logic, 119(1–3):1–18, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  19. Moti Gitik and Menachem Magidor. The singular cardinal hypothesis revisited. In Set Theory of the Continuum (Berkeley, CA, 1989), volume 26 of Mathematical Sciences Research Institute Publications, pages 243–279. Springer, New York, 1992.

    Google Scholar 

  20. Moti Gitik and Menachem Magidor. Extender based forcings. The Journal of Symbolic Logic, 59(2):445–460, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  21. Moti Gitik and William J. Mitchell. Indiscernible sequences for extenders, and the singular cardinal hypothesis. Annals of Pure and Applied Logic, 82(3):273–316, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  22. Moti Gitik and Saharon Shelah. On some configurations related to the Shelah weak hypothesis. Archive for Mathematical Logic, 40(8):639–650, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  23. Moti Gitik, Ralf Schindler, and Saharon Shelah. Pcf theory and Woodin cardinals. In Logic Colloquium (Münster, Germany, 2002), volume 27 of Lecture Notes in Logic, pages 172–2056. Association for Symbolic Logic, Urbana, 2006.

    Google Scholar 

  24. Thomas J. Jech. Singular cardinals and the pcf theory. The Bulletin of Symbolic Logic, 1(4):408–424, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  25. Thomas J. Jech. Set Theory. Springer Monographs in Mathematics. Springer, Berlin, 2002. The third millennium edition, revised and expanded.

    Google Scholar 

  26. Akihiro Kanamori. The Higher Infinite. Springer Monographs in Mathematics. Springer, Berlin, 2003. Second edition.

    MATH  Google Scholar 

  27. Akihiro Kanamori and Menachem Magidor. The evolution of large cardinal axioms in set theory. In Higher Set Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977), volume 669 of Lecture Notes in Mathematics, pages 99–275. Springer, Berlin, 1978.

    Google Scholar 

  28. Yechiel Kimchi and Menachem Magidor. The independence between the concepts of compactness and supercompactness. Manuscript.

    Google Scholar 

  29. John Kruger. Destroying stationary sets. Israel Journal of Mathematics, 147:285–328, 2005.

    Article  MathSciNet  Google Scholar 

  30. Kenneth Kunen. Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1983. Reprint of the 1980 original.

    MATH  Google Scholar 

  31. Kenneth Kunen and Jeffrey B. Paris. Boolean extensions and measurable cardinals. Annals of Mathematical Logic, 2(4):359–377, 1970/1971.

    Article  MathSciNet  Google Scholar 

  32. Jeffrey S. Leaning. Disassociated indiscernibles. To appear in The Journal of Symbolic Logic.

    Google Scholar 

  33. Azriel Levy and Robert M. Solovay. Measurable cardinals and the continuum hypothesis. Israel Journal of Mathematics, 5:234–248, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  34. Menachem Magidor. How large is the first strongly compact cardinal? or A study on identity crises. Annals of Mathematical Logic, 10(1):33–57, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  35. Menachem Magidor. On the singular cardinals problem. I. Israel Journal of Mathematics, 28(1–2):1–31, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  36. Menachem Magidor. On the singular cardinals problem. II. Annals of Mathematics (2), 106(3):517–547, 1977.

    Article  MathSciNet  Google Scholar 

  37. Menachem Magidor. Changing cofinality of cardinals. Fundamenta Mathematicae, 99(1):61–71, 1978.

    MATH  MathSciNet  Google Scholar 

  38. Adrian R.D. Mathias. On sequences generic in the sense of Prikry. Australian Mathematical Society, 15:409–414, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  39. Carmi Merimovich. Extender-based Radin forcing. Transactions of the American Mathematical Society, 355(5):1729–1772, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  40. Carmi Merimovich. A power function with a fixed finite gap everywhere. The Journal of Symbolic Logic, 72:361–417, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  41. William J. Mitchell. The Covering Lemma. Chapter 18 in this Handbook. 10.1007/978-1-4020-5764-9_19

  42. William J. Mitchell. How weak is a closed unbounded ultrafilter? In Logic Colloquium ’80 (Prague, 1980), volume 108 of Studies in Logic and the Foundations of Mathematics, pages 209–230. North-Holland, Amsterdam, 1982.

    Google Scholar 

  43. William J. Mitchell. The core model for sequences of measures. I. Mathematical Proceedings of the Cambridge Philosophical Society, 95(2):229–260, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  44. William J. Mitchell. Indiscernibles, skies, and ideals. In Axiomatic Set Theory (Boulder, Colo., 1983), volume 31 of Contemporary Mathematics, pages 161–182. Amrican Mathematical Society, Providence, 1984.

    Google Scholar 

  45. William J. Mitchell. Applications of the covering lemma for sequences of measures. Transactions of the American Mathematical Society, 299(1):41–58, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  46. William J. Mitchell. A measurable cardinal with a closed unbounded set of inaccessibles from o(κ)=κ. Transactions of the American Mathematical Society, 353(12):4863–4897, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  47. Karel L. Prikry. Changing measurable into accessible cardinals. Dissertationes Mathematicae (Rozprawy Matematyczne), 68:55, 1970.

    MathSciNet  Google Scholar 

  48. Lon B. Radin. Adding closed cofinal sequences to large cardinals. Annals of Mathematical Logic, 22(3):243–261, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  49. Miri Segal. Master thesis, The Hebrew University, 1993.

    Google Scholar 

  50. Assaf Sharon. Generators of pcf. Master thesis, Tel Aviv University, 2000.

    Google Scholar 

  51. Saharon Shelah. Some notes on iterated forcing with \(2^{\aleph\sb0}>\aleph_{2}\) . Notre Dame Journal of Formal Logic, 29(1):1–17, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  52. Saharon Shelah. Cardinal arithmetic for skeptics. Bulletin of the American Mathematical Society (N.S.), 26(2):197–210, 1992.

    Article  MATH  Google Scholar 

  53. Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, New York, 1994.

    MATH  Google Scholar 

  54. Saharon Shelah. Proper and Improper Forcing. Perspectives in Mathematical Logic. Springer, Berlin, 1998. Second edition.

    MATH  Google Scholar 

  55. Robert M. Solovay. Strongly compact cardinals and the GCH. In Proceedings of the Tarski Symposium, volume XXV of Proceedings of Symposia in Pure Mathematics, pages 365–372. American Mathematics Society, Providence, 1974.

    Google Scholar 

  56. Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori. Strong axioms of infinity and elementary embeddings. Annals of Mathematical Logic, 13(1):73–116, 1978.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moti Gitik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gitik, M. (2010). Prikry-Type Forcings. In: Foreman, M., Kanamori, A. (eds) Handbook of Set Theory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5764-9_17

Download citation

Publish with us

Policies and ethics