Skip to main content

Climatic Inferences from Dendroecological Reconstructions

  • Chapter
  • First Online:
Dendroclimatology

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 11))

Abstract

Tree rings have long been employed by ecologists to study the local-scale dynamics of forest stands and woodlands, but only recently have network approaches been applied to evaluate regional and broader-scale processes. As with dendroclimatic data (e.g., ring-width and ring-density chronologies), climatic drivers become much more evident in dendroecological data aggregated at broad spatial scales (relative to local-scale data). Study of dendroecology networks has led to new insights on climatic variability and change and their impacts on ecosystems. In addition to the power of network approaches, dendroecology has advanced in recent decades because of the ready availability of, and comparison with, high quality, independent dendroclimatic reconstructions of various hydro-climatic parameters (e.g., drought indices, precipitation and temperature) and ocean-atmosphere indices (e.g., ENSO, PDO, and AMO). Dendroecological reconstructions that have been most commonly employed in climate-related analyses are disturbance histories (e.g., fire and insect outbreaks). We review examples of these applications from our studies in the Southwestern United States. We also compile and describe here, for the first time, a regional network of ponderosa pine (Pinus ponderosa) establishment dates from the Southwest, and we show that episodic natality patterns are probably associated with decadal wet periods. Using another example of decadal variability in forest fire histories—specifically a hiatus in fire occurrence in the circa 1780–1840 time period—we make a case that regional to continental-scale dendroecological reconstructions can provide useful insights about ‘ecologically-effective climate change’. We define this type of climatic variability as the patterns of climate at interannual, decadal and centennial scales that are most distinctly reflected in synchronous ecological responses at regional and broader scales. In the context of dendroclimatology, primary values of the investigation of specific climatic patterns that elicit regional and broader ecological responses is that these studies provide insights about climate variability that is relevant to ecosystems, and in turn, human concerns about future climate change impacts on ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abolt RA (1997) Fire histories of upper elevation forests in the Gila Wilderness, New Mexico via fire-scar analysis and stand age structure analysis. MS thesis, The University of Arizona, Tucson, Arizona

    Google Scholar 

  • Baisan CH, Swetnam TW (1990) Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, USA. Can J Forest Res 20:1559–1569

    Article  Google Scholar 

  • Barton AM, Swetnam TW, Baisan CH (2001) Arizona pine (Pinus arizonica) stand dynamics: local and regional factors in a fire-prone Madrean gallery forest of southeast Arizona, USA. Landscape Ecol 16: 51–369

    Article  Google Scholar 

  • Baumgartner TR, Michaelsen J, Thompson LG, Shen GT, Soutar A, Casey RE (1989) The recording of interannual climatic change by high-resolution natural systems: tree rings, coral bands, glacial ice layers, and marine varves. In: Peterson DH (ed) Aspects of climatic variability in the Pacific and the western Americas. Geophys Monogr 55:1–14

    Google Scholar 

  • Blackburn WH, Tueller PT (1970) Pinyon and juniper invasion in black sagebrush communities in east-central Nevada. Ecology 51:841–848

    Article  Google Scholar 

  • Blais JR (1981) Recurrence of spruce budworm outbreaks for 200 years in western Quebec. Forest Chron 57:273–275

    Google Scholar 

  • Boyden S, Binkley D, Shepperd W (2005) Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. Forest Ecol Manag 219:43–55

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148

    Article  CAS  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH (1994) Summer temperatures across northern North America: regional reconstructions from 1760 using tree-ring densities. J Geophys Res 99:25835–25844

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago, Illinois

    Google Scholar 

  • Brown PM (2006) Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests. Ecology 87:2500–2510

    Article  Google Scholar 

  • Brown PM, Cook B (2006) Early settlement forest structure in Black Hills ponderosa pine forests. Forest Ecol Manag 223:284–290

    Article  Google Scholar 

  • Brown PM, Shepperd WD (2001) Fire history and fire climatology along a 5° gradient in latitude in Colorado and Wyoming, USA. Palaeobotanist 50:133–140

    Google Scholar 

  • Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86:3030–3038

    Article  Google Scholar 

  • Brown PM, Kaye MW, Huckaby LS, Baisan CH (2001) Fire history along environmental gradients in the Sacramento Mountains, New Mexico: influences of local and regional processes. Ecoscience 8:115–126

    Google Scholar 

  • Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. B Am Meteorol Soc 82:399–415

    Article  Google Scholar 

  • Clark NE, Blasing TJ, Fritts HC (1975) Influence of interannual climatic fluctuations on biological systems. Nature 256(5515):302–305

    Article  Google Scholar 

  • Cook ER (1990) A conceptual linear aggregate model for tree rings. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. International Institute for Applied Systems Analysis, Kluwer, Boston, Massachusetts, pp 98–104

    Google Scholar 

  • Cook ER (2000) NINO3 index reconstruction. International Tree-Ring Data Bank. IGBP PAGES/World Data Center-A for Paleoclimatology data contr. ser. #2000-052. NOAA/NGDC Paleoclimatology Program, Boulder Colorado, USA

    Google Scholar 

  • Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Climate 12:1145–1162

    Article  Google Scholar 

  • Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018

    Article  CAS  Google Scholar 

  • Cooper CF (1960) Changes in vegetation, structure, and growth of southwestern pine forests since white settlement. Ecol Monogr 30:129–164

    Article  Google Scholar 

  • Crimmins MA, Comrie AC (2004) Interactions between antecedent climate and wildfire variability across southeastern Arizona. Int J Wildland Fire 13:455–466

    Article  Google Scholar 

  • D’Arrigo R, Villalba R, Wiles G (2001) Tree-ring estimates of Pacific decadal climate variability. Clim Dynam 18:219–224

    Article  Google Scholar 

  • D’Arrigo R, Cook ER, Wilson RJ, Allan R, Mann ME (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32(3). doi:10.1029/2004GL022055: Art. no. L03711

    Google Scholar 

  • Donnegan JA, Veblen TT, Sibold JS (2001) Climatic and human influences on fire history in Pike National Forest, central Colorado. Can J Forest Res 31:1526–1539

    Article  Google Scholar 

  • Dunbar R, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 AD: the d18O record of climate variability in Galapagos corals. Paleoceanography 9:291–316

    Article  Google Scholar 

  • Esper J, Buntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1,200 years of regular outbreaks in alpine insects. Proc R Soc B Bio 274:671–679. doi:10.1098/rspb.2006.0191

    Article  Google Scholar 

  • Frelich LE, Graumlich LJ (1994) Age-class distribution and spatial patterns in an old-growth hemlock-hardwood forest. Can J Forest Res 24:1939–1947

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, New York, 567 pp

    Google Scholar 

  • Fritts HC (1991) Reconstructing large-scale climatic patterns from tree-ring data. The University of Arizona Press, Tucson, 286 pp

    Google Scholar 

  • Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–189

    Article  Google Scholar 

  • Fule PZ, Covington WW, Moore MM, Heinlein TA, Waltz AEM (2002) Natural variability in forests of the Grand Canyon, USA. J Biogeogr 29:31–47

    Article  Google Scholar 

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GD (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys Res Lett 31:L12205. doi:10.1029/2004GL019932

    Article  Google Scholar 

  • Grissino-Mayer HD (1996) A 2,129-year reconstruction of precipitation for northwestern New Mexico, USA. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment, and humanity. Radiocarbon, Tucson, AZ, pp 191–204

    Google Scholar 

  • Grissino-Mayer HD, Swetnam TW (2000) Century-scale climate forcing of fire regimes in the American Southwest. Holocene 10:213–220

    Article  Google Scholar 

  • Hadley KS, Veblen TT (1993) Stand response to western spruce budworm and Douglas-fir bark beetle outbreaks, Colorado Front Range. Can J Forest Res 23:479–491

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London, 892 pp

    Google Scholar 

  • Hawkins BA, Holyoak M (1998) Transcontinental crashes of insect populations? Am Nat 152(3):480–484

    Article  CAS  Google Scholar 

  • Henry JD, Swan JMA (1974) Reconstructing forest history from live and dead plant material—an approach to the study of forest succession in southwest New Hampshire. Ecology 55:772–783

    Article  Google Scholar 

  • Hessl AE, McKenzie D, Schellhaas R (2004) Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest. Ecol Appl 14:425–442

    Article  Google Scholar 

  • Heyerdahl EK, Brubaker LB, Agee JK (2002) Annual and decadal climate forcing of historical fire regimes in the interior Pacific Northwest, USA. Holocene 12:597–604

    Article  Google Scholar 

  • Jardon Y (2001) Analyses temporelles et spatiales des épidémies de la tordeuse des bourgeons de l’épinette au Québec. PhD dissertation, Université du Québec, Montreal, QC, 157 pp

    Google Scholar 

  • Johnson EA, Miyanishi K, Kleb H (1994) The hazards of interpretation of static age structures as shown by stand reconstructions in a Pinus contorta, Picea engelmannii forest. J Ecol 82:923–931

    Article  Google Scholar 

  • Kitzberger T, Veblen TT (1998) Influences of humans and ENSO on fire history of Austrocedrus chilensis woodlands in northern Patagonia, Argentina. Ecoscience 4:508–520

    Google Scholar 

  • Kitzberger T, Veblen TT, Villalba R (1997) Climatic influences on fire regimes along a rain forest to xeric woodland gradient in northern Patagonia, Argentina. J Biogeogr 24:35–47

    Article  Google Scholar 

  • Kitzberger T, Swetnam TW, Veblen TT (2001) Interhemispheric synchrony of forest fires and the El Niño/Southern Oscillation. Global Ecol Biogeogr 10:315–326

    Article  Google Scholar 

  • Kitzberger T, Brown PM, Heyerdahl EK, Swetnam TW, Veblen TT (2007) Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America. Proc Natl Acad Sci USA 104(2):543–548

    Article  CAS  Google Scholar 

  • Knapp PA (1995) Intermountain west lightning-caused fires: climatic predictors of area burned. J Range Manage 48:85–91

    Article  Google Scholar 

  • Kneeshaw DD, Bergeron Y (1998) Canopy gap characteristics and tree replacement in the southeastern boreal forest. Ecology 79:783–794

    Article  Google Scholar 

  • Koenig WD, Knops JMH (1998) Scale of mast-seeding and tree-ring growth. Nature 396:225–226

    Article  CAS  Google Scholar 

  • Krause C (1997) The use of dendrochronological material from buildings to get information about past spruce budworm outbreaks. Can J Forest Res 27:69–75

    Article  Google Scholar 

  • League K, Veblen TT (2006) Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. Forest Ecol Manag 228:98–107

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Logan JA, Régnière J, Powell JA (2003) Assessing the impacts of global warming on forest pest dynamics. Front Ecol Environ 1:130–137

    Article  Google Scholar 

  • Lorimer CG (1985) Methodological considerations in the analysis of forest disturbance history. Can J Forest Res 15:200–213

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  CAS  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Margolis EQ, Swetnam TW, Allen CD (2007) A stand-replacing fire history in upper montane forests of the southern Rocky Mountains. Can J Forest Res 37:2227–2241

    Article  Google Scholar 

  • Martinat PJ (1987) The role of climatic variation and weather in forest insect outbreaks. In: Barbosa P, Schultz JC (eds) (1987) Insect outbreaks. Academic Press, San Diego, pp 241–268

    Google Scholar 

  • Mast JN, Wolf JJ (2004) Ecotonal changes and altered tree spatial patterns in lower mixed-conifer forests, Grand Canyon National Park, Arizona, USA. Landscape Ecol 19:167–180

    Article  Google Scholar 

  • Mast JN, Fule PZ, Moore MM, Covington WW, Waltz AME (1999) Restoration of presettlement age structure of an Arizona ponderosa pine forest. Ecol Appl 9:228–239

    Article  Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–118

    Article  Google Scholar 

  • Michaelsen J, Thompson LG (1992) A comparison of proxy records of El Niño/Southern Oscillation. In: Diaz HF, Markgraf V (eds) El Niño: historical and paleoclimatic aspects of the Southern Oscillation, Cambridge University Press, Cambridge, UK, pp 323–348

    Google Scholar 

  • Moran PAP (1953) The statistical analysis of the Canadian lynx cycle. Aust J Zool 1:291–298

    Article  Google Scholar 

  • Morin H, LaPrise D, Bergeron Y (1993) Chronology of spruce budworm outbreaks near Lake Duparquet, Abitibi region, Quebec. Can J Forest Res 23:1497–1506

    Article  Google Scholar 

  • Morneau C, Payette S (2000) Long-term fluctuations of a caribou population revealed by tree-ring data. Can J Zool 78:1784–1790

    Article  Google Scholar 

  • Morrow PA, LaMarche VC Jr (1978) Tree-ring evidence for chronic insect suppression of productivity in subalpine eucalyptus. Science 201:1244–1246

    Article  CAS  Google Scholar 

  • Myers JH (1998) Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect. Ecology 79:1111–1117

    Article  Google Scholar 

  • Norman SP, Taylor AH (2003) Tropical and north Pacific teleconnections influence fire regimes in pine-dominated forests of northeastern California, USA. J Biogeogr 30:1081–1092

    Article  Google Scholar 

  • Pearson GA (1950) Management of ponderosa pine in the Southwest, as developed by research and experimental practice. Agriculture monograph 6, US Department of Agriculture, Forest Service, Washington, DC

    Google Scholar 

  • Perkins D, Swetnam TW (1996) A dendroecological assessment of whitebark Pine (Pinus albicaulis) in the Sawtooth–Salmon River region of Idaho. Can J Forest Res 26:2123–2133

    Article  Google Scholar 

  • Quinn WH, Neal VT (1992) The historical record of El Niño events. In: Bradley RS, Jones PD (eds) Climate since AD 1500. Routledge, London, pp 623–646

    Google Scholar 

  • Ranta E, Kaitala V, Lindstrom J, Helle E (1997) The Moran effect and synchrony in population dynamics. Oikos 78:136–142

    Article  Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  CAS  Google Scholar 

  • Royama T (1984) Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol Monogr 54:429–462

    Article  Google Scholar 

  • Ryerson DE, Swetnam TW, Lynch AM (2003) A tree-ring reconstruction of western spruce budworm outbreaks in the San Juan Mountains, Colorado, USA. Can J Forest Res 33:1010–1028

    Article  Google Scholar 

  • Savage M (1991) Structural dynamics of a southwestern pine forest under chronic human influence. Ann Assoc Am Geogr 81:271–289

    Article  Google Scholar 

  • Savage M, Brown PM, Feddema J (1996) The role of climate in a pine forest regeneration pulse in the southwestern United States. Ecoscience 3:310–318

    Google Scholar 

  • Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol Appl 15(6):2000–2014

    Article  Google Scholar 

  • Schulman E (1956) Dendroclimatic changes in semiarid America. The University of Arizona Press, Tucson, Arizona, 142 pp

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment dendroecology. Paul Haupt, Berne, Switzerland

    Google Scholar 

  • Sibold JS, Veblen TT (2006) Relationships of subalpine forest fires in the Colorado Front Range with interannual and multidecadal-scale climatic variation. J Biogeogr 33:833–842

    Article  Google Scholar 

  • Sinclair ARE, Gosline JM (1997) Solar activity and mammal cycles in the Northern Hemisphere. Am Nat 149:776–784

    Article  Google Scholar 

  • Sinclair ARE, Gosline JM, Holdsworth G, Krebs CJ, Boutin S, Smith JNM, Boonstra R, Dale M (1993) Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am Nat 141:173–182

    Article  CAS  Google Scholar 

  • Speer JH, Swetnam TW, Wickman BE, Youngblood A (2001) Changes in Pandora moth outbreak dynamics during the past 622 years. Ecology 82:679–697

    Article  Google Scholar 

  • Spencer DA (1964) Porcupine population fluctuations in past centuries revealed by dendrochronology. J Appl Ecol 1:127–149

    Article  Google Scholar 

  • Stahle DW, D’Arrigo RD, Krusic PJ, Cleaveland MK, Cook ER, Allan RJ, Cole JE, Dunbar RB, Therrell MD, Gay DA, Moore MD, Stokes MA, Burns BT, Villanueva-Diaz J, Thompson LG (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. B Am Meteorol Soc 79:2137–2152

    Article  Google Scholar 

  • Stephens SL, Skinner CN, Gill SJ (2003) Dendrochronology-based fire history of Jeffrey pine–mixed conifer forests in the Sierra San Pedro Mártir, Mexico. Can J Forest Res 33:1090–1101

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago, Illinois, 73 pp

    Google Scholar 

  • Swetnam, TW (1993) Fire history and climate change in giant sequoia groves. Science 262:885–889

    Article  CAS  Google Scholar 

  • Swetnam TW, Baisan CH (1996) Fire effects in southwestern forests. Proceedings of the second La Mesa fire symposium, Los Alamos, New Mexico, March 29–31, 1994. USDA Forest Service general technical report RM-GTR-286

    Google Scholar 

  • Swetnam TW, Baisan CH (2003) Tree-ring reconstructions of fire and climate history in the Sierra Nevada and southwestern United States. In: Veblen TT, Baker W, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Ecological studies, vol 160. Springer, New York, pp 158–195

    Chapter  Google Scholar 

  • Swetnam TW, Betancourt JL (1990) Fire–Southern Oscillation relations in the southwestern United States. Science 249:1017–1020

    Article  CAS  Google Scholar 

  • Swetnam TW, Betancourt JL (1992) Temporal patterns of El Niño/Southern Oscillation: wildfire patterns in the southwestern United States. In: Diaz HF, Markgraf VM (eds) El Niño: historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University Press, Cambridge, UK, pp 259–270

    Google Scholar 

  • Swetnam TW, Betancourt JL (1998) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Climate 11:3128–3147

    Article  Google Scholar 

  • Swetnam TW, Dieterich JH (1985) Fire history of ponderosa pine forests in the Gila Wilderness, New Mexico. In: Lotan JE, Kilgore BM, Fischer WC, Mutch RW (tech coords) Proceedings—symposium and workshop on wilderness fire, November 15–18, 1983, Missoula, Montana. USDA Forest Service general technical report INT-182, pp 390–397

    Google Scholar 

  • Swetnam TW, Lynch AM (1993) Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecol Monogr 63:399–424

    Article  Google Scholar 

  • Swetnam TW, Thompson MA, Sutherland EK (1985) Using dendrochronology to measure radial growth of defoliated trees. USDA Forest Service agricultural handbook 639:1–39

    Google Scholar 

  • Swetnam TW, Wickman BE, Paul HG, Baisan CH (1995) Historical patterns of western spruce budworm and Douglas-fir tussock moth outbreaks in the northern Blue Mountains, Oregon, since AD 1700. Research paper PNW-RP-484. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Oregon, 27 pp

    Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206

    Article  Google Scholar 

  • Taylor AH, Beaty RM (2005) Climatic influences on fire regimes in the northern Sierra Nevada mountains, Lake Tahoe basin, Nevada, USA. J Biogeogr 32:425–438

    Article  Google Scholar 

  • Trotter RT, Cobb NS, Whitham TG (2002) Herbivory, plant resistance, and climate in the tree-ring record: interactions distort climate reconstructions. Proc Natl Acad Sci USA 99:10197–10202

    Article  CAS  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, O’Neill RV, Kratz TK (1993) A revised concept of landscape equilibrium: disturbance and stability on scaled landscapes. Landscape Ecol 8:213–227

    Article  Google Scholar 

  • Veblen TT, Kitzberger T (2002) Interhemispheric comparison of fire history: the Colorado Front Range, USA, and the northern Patagonian Andes, Argentina. Plant Ecol 163:187–207

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69:47–67

    Article  Google Scholar 

  • Veblen TT, Kitzberger T, Donnegan J (2000) Climatic and human influences on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecol Appl 10:1178–1195

    Article  Google Scholar 

  • Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) (2003) Fire and climatic change in temperate ecosystems of the western Americas. Ecological studies, vol 160. Springer, New York, 444 pp

    Google Scholar 

  • Villalba R (1994) Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America. Climatic Change 26:183–197

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997a) Regional patterns of tree population age structures in northern Patagonia: climatic and disturbance influences. J Ecol 85:113–124

    Article  Google Scholar 

  • Villalba R, Veblen TT (1997b) Improving estimates of total tree ages based on increment core samples. Ecoscience 4:534–542

    Google Scholar 

  • Weber UM (1997) Dendroecological reconstruction and interpretation of larch budmoth (Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470–1990. Trees-Struct Funct 11:277–290

    Google Scholar 

  • Westerling AL, Swetnam TW (2003) Interannual to decadal drought and wildfire in the western US. Eos 84(49):545–560

    Article  Google Scholar 

  • Westerling AL, Gershunov A, Cayan DR, Barnett TP (2002) Long lead statistical forecasts of area burned in western United States wildfires by ecosystem province. Int J Wildland Fire 11:257–266

    Article  Google Scholar 

  • Westerling AL, Gershunov A, Brown TJ, Cayan DR, Dettinger MD (2003) Climate and wildfire in the western United States. B Am Meteorol Soc, May 2003:595–604

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. wildfire activity. Science 313:940–943

    Article  CAS  Google Scholar 

  • White TCR (1976) Weather, food and plagues of locusts. Oecologia 22:119–134

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all of the many students and colleagues who have contributed to the collection and development of the dendroecological and dendroclimatological datasets that we describe and illustrate in this chapter. Our research over the past three decades has been supported primarily by The University of Arizona, US Forest Service, US Geological Survey, National Park Service, The Nature Conservancy, and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Swetnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Swetnam, T.W., Brown, P.M. (2011). Climatic Inferences from Dendroecological Reconstructions. In: Hughes, M., Swetnam, T., Diaz, H. (eds) Dendroclimatology. Developments in Paleoenvironmental Research, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5725-0_9

Download citation

Publish with us

Policies and ethics