Skip to main content

On the Stabilizing Properties of Energy-Momentum Integrators and Coordinate Projections for Constrained Mechanical Systems

  • Conference paper

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 4))

Abstract

Several considerations are important if we try to carry out fast and precise simulations in multibody dynamics: the choice of modeling coordinates, the choice of dynamical formulations and the numerical integration scheme along with the numerical implementation. All these matters are very important in order to decide whether a specific method is good or not for a particular purpose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uri M. Ascher. Stabilization of invariants of discretized differential systems. Numerical Algorithms, 14:1–23, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering, 1:1–16, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bayo and A. Avello. Singularity-free augmented lagrangian algortihms for constrained multibody dynamics. Nonlinear Dynamics, 9:113–130, 1996.

    Article  MathSciNet  Google Scholar 

  4. E. Bayo, J. García de Jalón, and M.A. Serna. A modified lagrangian formulation for the dynamic analysis of constrained mechanical systems. Computer Methods in Applied Mechanics and Engineering, 71:183–195, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Bayo and R. Ledesma. Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dynamics, 9:113–130, 1996.

    Article  MathSciNet  Google Scholar 

  6. Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 2003.

    Google Scholar 

  7. Marco Borri, Lorezo Trainelli, and Alessandro Croce. The embedded projection method: a general index reduction procedure for constrained system dynamics. Computer Methods in Applied Mechanics and Engineering, 2005.

    Google Scholar 

  8. K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Numerical Solution of Initial-Value Problems in Differential-Algebraic. SIAM, 1996.

    Google Scholar 

  9. J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo. Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and pararell computing environments. Multibody System Dynamics, 4:55–73, 2000.

    Article  MATH  Google Scholar 

  10. J. Cuadrado, D. Dopico, M.A. Naya, and M. González. Penalty, semi-recursive and hybrid methods for mbs real-time dynamics in the context of structural integrators. Multibody System Dynamics, 12:117–132, 2004.

    Article  MATH  Google Scholar 

  11. J. García de Jalón and E. Bayo. Kinematic and Dynamic Simulation of Multibody Systems. The Real Time Challenge. Springer-Verlag, 1994.

    Google Scholar 

  12. J. C. García Orden and J. M. Goicolea. Conserving properties in constrained dynamics of flexible multibody systems. Multibody System Dynamics, 4:225–244, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. C. García Orden and D. Dopico Dopico. Energetic considerations of stabilization through coordinate projection in constrained mechanical systems. In preparation, 2006.

    Google Scholar 

  14. J. C. García Orden and J.M. Goicolea. An energy-momentum algorithm for flexible multibody systems with finite element techniques. Computer Assisted Mechanics and Engineering Sciences (Polish Academy of Sciences), 8:313–324, 2001.

    MATH  Google Scholar 

  15. J. C. García Orden and R. Ortega. A conservative augmented lagrangian algorithm for the dynamics of constrained mechanical systems. In C.A. Mota Soares et al. (ed.), III European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering, Lisboa, Portugal, 5–8 June 2006.

    Google Scholar 

  16. M. Geradin and D. Rixen. Mechanical Vibrations. Wiley, 1997.

    Google Scholar 

  17. J. M. Goicolea and J. C. García Orden. Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes. Computer Methods in Applied Mechanics and Engineering, 188(4):789–804, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. M. Goicolea and J. C. García Orden. Quadratic and higher-order constraints in energyconserving formulations in flexible multibody systems. Multibody System Dynamics, 7:3–29, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. O. González and J.C. Simó. On the stability of symplectic and energy-momentum algorithms for non linear hamiltonian systems with symmetry. Computer Methods in Applied Mechanics and Engineering, 1996.

    Google Scholar 

  20. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer-Verlag, 1991.

    Google Scholar 

  21. T. A. Laursen. Computational Contact and Impact Mechanics. Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer, 2002.

    Google Scholar 

  22. M. Ortiz. A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers and Structures, 24(1), 1986.

    Google Scholar 

  23. M. A. Serna, R. Avilés, and J. García de Jalón. Dynamics analysis of plane mechanisms with lower pairs in basic coordinates. Mechanism and Machine Theory, 17:397–403, 1982.

    Article  Google Scholar 

  24. J. C. Simó and N. Tarnow. The discrete energy-momentum method. conserving algorithms for nonlinear elastodynamics. ZAMP, 1992.

    Google Scholar 

  25. J. C. Simó and K.K. Wong. Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. International Journal of Numerical Methods in Engineering, 31:19–52, 1991.

    Article  MATH  Google Scholar 

  26. A. M. Stuart and A.R. Humphries. Dynamical Systems and Numerical Analysis. Cambridge, 1996.

    Google Scholar 

  27. R. Wehage and E.J. Haugh. Generalized coordinate partitioning for dimension reduction in analysis of constrained mechanical systems. Journal of Mechanical Design, 104:247–255, 1982.

    Article  Google Scholar 

  28. P. Wriggers. Computational Contact Mechanics. Wiley, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

García Orden, J.C., Dopico, D.D. (2007). On the Stabilizing Properties of Energy-Momentum Integrators and Coordinate Projections for Constrained Mechanical Systems. In: García Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5684-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5684-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5683-3

  • Online ISBN: 978-1-4020-5684-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics