Skip to main content

Electronic Structure of Atoms and Molecules

  • Chapter
  • 1980 Accesses

Abstract

Everything that counts in chemistry is related to the electronic structure of atoms and molecules. The formation of molecules from atoms, their behavior and reactivity all depend on the electronic structure. What is the role of symmetry in all this? In various aspects of the electronic structure, symmetry can tell us a good deal; why certain bonds can form and others cannot, why certain electronic transitions are allowed and others are not, and why certain chemical reactions occur and others do not.

An atom must be at least as complex as a grand piano. William K. Clifford (18451879) [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. L. Mackay, A Dictionary of Scientific Quotations, Adam Hilder, Bristol 1991, p. 57/85.

    Google Scholar 

  2. I. N. Levine, Quantum Chemistry, Sixth Edition, Prentice Hall, Upper Saddle River, New Jersey, 2008.

    Google Scholar 

  3. P. Atkins, R. Friedman, Molecular Quantum Mechanics, Fourth Edition, Oxford University Press, New York, 2005.

    Google Scholar 

  4. D.V.George, Principles of Quantum Chemistry, Pergamon Press, New York, 1972.

    Google Scholar 

  5. M.W.Hanna, Quantum Mechanics in Chemistry, Second Edition, W. A. Benjamin, New York, Amsterdam, 1969.

    Google Scholar 

  6. F. A. Cotton, Chemical Applications of Group Theory, Third Edition, Wiley-Interscience, New York, 1990.

    Google Scholar 

  7. D. C. Harris, M. D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy, Dover Publications, New York, 1989.

    Google Scholar 

  8. M. Orchin, H. H. Jaffe, Symmetry Orbitals, and Spectra (S.O.S), Wiley-Interscience, New York, 1971.

    Google Scholar 

  9. Hanna, Quantum Mechanics in Chemistry.

    Google Scholar 

  10. Atkins, Friedman, Molecular Quantum Mechanics.

    Google Scholar 

  11. George, Principles of Quantum Chemistry.

    Google Scholar 

  12. Hanna, Quantum Mechanics in Chemistry.

    Google Scholar 

  13. Cotton, Chemical Applications of Group Theory.

    Google Scholar 

  14. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.

    Google Scholar 

  15. Harris, Bertolucci, Symmetry and Spectroscopy.

    Google Scholar 

  16. Ibid, p. 3.

    Google Scholar 

  17. Ibid.

    Google Scholar 

  18. T. H.Lowry, K.S.Richardson, Mechanism and Theory in Organic Chemistry; Third Edition. Harper and Row, New York (1987)

    Google Scholar 

  19. Maple V, Release 2, Waterloo Maple Software, University of Waterloo, Ontario, Canada.

    Google Scholar 

  20. C. A. Coulson, The Shape and Structure of Molecules, Clarendon Press, Oxford, 1973.

    Google Scholar 

  21. G. Lanza, Z. Varga, M. Kolonits, M. Hargittai, “On the Effect of 4f Electrons on the Structural Characteristics of Lanthanide Trihalides. Computational and Electron Diffraction Study of Dysprosium Trichloride”. J. Chem. Phys. 2008, 128, 074301–1–14.

    Article  Google Scholar 

  22. Drawn with Gaussview, Version 4.1.2, A. Frisch, R. D. Dennington II, T. D. Keith and J. Millam, Gaussview 4 Reference, Gaussian Inc., 2007.

    Google Scholar 

  23. Cotton, Chemical Applications of Group Theory.

    Google Scholar 

  24. Drawn with Gaussview (for reference, see, Figure 6-13).

    Google Scholar 

  25. Harris, Bertolucci, Symmetry and Spectroscopy.

    Google Scholar 

  26. Ibid.

    Google Scholar 

  27. Ibid.

    Google Scholar 

  28. Drawn with Gaussview (for reference, see, Figure 6-13).

    Google Scholar 

  29. Ibid.

    Google Scholar 

  30. Cotton, Chemical Applications of Group Theory.

    Google Scholar 

  31. J. L. Gay-Lussac, “Memoir on the Combination of Gaseous Substances with Each Other.” Mémoires de la Société d’Arcueil 1809, 2, 207–234, as translated in Alembic Club Reprint No. 4, (Edinburgh, 1890).

    Google Scholar 

  32. Levine, Quantum Chemistry.

    Google Scholar 

  33. Atkins, Friedman, Molecular Quantum Mechanics.

    Google Scholar 

  34. George, Principles of Quantum Chemistry.

    Google Scholar 

  35. Hanna, Quantum Mechanics in Chemistry.

    Google Scholar 

  36. Encyclopedia of Computational Chemistry, eds. P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, P. R. Schreiner, Wiley, Chichester, 1998.

    Google Scholar 

  37. I. Hargittai, M. Hargittai, Symmetry through the Eyes of a Chemist, Second Edition, Plenum, New York, 1995, p. 272.

    Google Scholar 

  38. M. Hargittai, I. Hargittai, “Aspects of Structural Chemistry in Molecular Biology”, In: A. Domenicano, I. Hargittai, eds.: Strength from Weekness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals, Kluwer, Dordrecht, 2002, pp. 91–119.

    Chapter  Google Scholar 

  39. M. Hargittai, I. Hargittai, “Experimental and Computed Bond Lengths: The Importance of Their Differences.” Int. J. Quant. Chem. 1992, 44, 1057–1067.

    Article  CAS  Google Scholar 

  40. I. Hargittai, M. Hargittai, “The Importance of Small Structural Differences,” in Molecular Structure and Energetics, Vol. 2, Chapter 1, J. F. Liebman and A. Greenberg, eds., VCH Publishers, New York, 1987, pp. 1–35.

    Google Scholar 

  41. R. Hilgenfeld, W. Saenger, “Stetter’s Complexes are no Intramolecular Inclusion Compounds.” Angew. Chem. Int. Ed. Eng. 1982, 21, 787–788.

    Article  Google Scholar 

  42. K. B. Borisenko, C. W. Bock, I. Hargittai, “Intramolecular Hydrogen Bonding and Molecular Geometry of 2-Nitrophenol from a Joint Gas-Phase Electron Diffraction and Ab Initio Molecular Orbital Investigation.” J. Phys. Chem. 1994, 98, 1442–1448.

    Article  CAS  Google Scholar 

  43. M. Hargittai, P. Schwerdtfeger, B. Réffy, R. Brown, “The Molecular Structure of Different Species of Cuprous Chloride from Gas-Phase Electron Diffraction and Quantum Chemical Calculation.”Chem. Eur. J. 2003, 9, 327–333.

    Article  CAS  Google Scholar 

  44. B. Vest, Z. Varga, M. Hargittai, A. Hermann, P. Schwerdtfeger, “The Elusive Structure of CrCl2 – A Combined Computational and Gas Phase Electron Diffraction Study.” Chem. Eur. J. 2008, 14, 5130–5143.

    Article  CAS  Google Scholar 

  45. Z. Varga, G. Lanza, C. Minichino, M. Hargittai, “Quasilinear Molecule par Excellence, SrCl2: Structure from High-Temperature Gas-Phase Electron Diffraction and Quantum Chemical Calculations; Computed Structures of SrCl2-Argon Complexes.” Chem. Eur. J. 2006, 12, 8345–8357.

    Article  CAS  Google Scholar 

  46. R. D. Levine, “The Chemical Shape of Molecules – An Introduction to Dynamic Stereochemistry.” J. Phys. Chem. 1990, 94, 8872–8880.

    Article  CAS  Google Scholar 

  47. H. F. Schafer III., “Computers and Molecular Quantum Mechanics: 1965–2001, a personal perspective.” J. Mol. Struct. (Theochem) 2001, 573, 129–137.

    Google Scholar 

  48. H. F. Schafer III, Private communication to one of the authors (IH) at the 10th Conference on the Current Trends in Computational Chemistry, Jackson, Mississippi, 2001.

    Google Scholar 

  49. H. Bethe, “Termaufspaltung in Kristallen (Splitting of Terms in Crystals)” Ann. Phys. 1929, 3, 133–208.

    Article  CAS  Google Scholar 

  50. F. A. Cotton, G. Wilkinson, P. L. Gaus, Basic Inorganic Chemistry, Second Edition, John Wiley & Sons, New York, 1987.

    Google Scholar 

  51. Ibid.

    Google Scholar 

  52. A. Ceulemans, D. Beyens, L. G. Vanquickenborne, “Symmetry Aspects of Jahn–Teller Activity – Structure and Reactivity.” J. Am. Chem. Soc. 1984, 106, 5824–5837.

    Article  CAS  Google Scholar 

  53. H. A. Jahn, E. Teller, “Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy.” Proc. Roy. Soc. 1937, A161, 220–235.

    Article  Google Scholar 

  54. T. A. Barckholtz, T. A. Miller, “Quantitative Insights about Molecules Exhibiting Jahn–Teller and Related Effects.” Int. Rev. Phys. Chem. 1998, 17, 435–524.

    Article  CAS  Google Scholar 

  55. I. B. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry, Plenum Press, New York, 1984.

    Book  Google Scholar 

  56. I. B. Bersuker and V. Z. Polinger, Vibronic Interactions in Molecules and Crystals, Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  57. I. B. Bersuker, The Jahn–Teller Effect, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  58. I. B. Bersuker, “Jahn–Teller Effect in Crystal-Chemistry and Spectroscopy.” Coord. Chem. Rev. 1975, 14, 357–412.

    Article  CAS  Google Scholar 

  59. I. B. Bersuker, “Modern Aspects of the Jahn–Teller Effect Theory and Applications to Molecular Problems.” Chem. Rev. 2001, 101, 1067–1114.

    Article  CAS  Google Scholar 

  60. I. B. Bersuker, “The Jahn–Teller Effect As a General Tool for Solving Molecular and Solid State Problems: Novel Findings.” J. Mol. Struct. 2007, 838, 44–52.

    Article  CAS  Google Scholar 

  61. Jahn, Teller, Proc. Roy. Soc.

    Google Scholar 

  62. J. S. Wright, G. A. GiLabio, “Structure and Stability of Small Hydrogen Rings.” J. Phys. Chem. 1992, 96, 10793–10799.

    Article  CAS  Google Scholar 

  63. B. E. Applegate, T. E. Miller, J. Chem. Phys. 2002, 17, 10654–10674.

    Article  Google Scholar 

  64. Cotton et al.,Basic Inorganic Chemistry.

    Google Scholar 

  65. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry.

    Google Scholar 

  66. Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.

    Google Scholar 

  67. Bersuker, The Jahn–Teller Effect.

    Google Scholar 

  68. A. F. Wells, Structural Inorganic Chemistry, Fourth Edition, Clarendon Press, Oxford, 1975.

    Google Scholar 

  69. Ibid.

    Google Scholar 

  70. Ibid.

    Google Scholar 

  71. Ibid.

    Google Scholar 

  72. J. E. Huheey, Inorganic Chemistry Principles of Structure and Reactivity, Third Edition, Harper & Row Publishers, New York, 1983.

    Google Scholar 

  73. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry.

    Google Scholar 

  74. Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.

    Google Scholar 

  75. Bersuker, The Jahn–Teller Effect.

    Google Scholar 

  76. Bersuker, Polinger, Vibronic Interactions in Molecules and Crystals.

    Google Scholar 

  77. Bersuker, Coord. Chem. Rev. 357–412.

    Google Scholar 

  78. Ibid.

    Google Scholar 

  79. Huheey, Inorganic Chemistry Principles of Structure and Reactivity.

    Google Scholar 

  80. M. Hargittai, B. Réffy, M. Kolonits, C. J. Marsden, J.-L. Heully, “The Structure of the Free MnF3 Molecule – A Beautiful Example of the Jahn–Teller Effect.” J.Am. Chem. Soc. 1997, 119, 9042–9048.

    Article  CAS  Google Scholar 

  81. B. Réffy, M. Kolonits, A. Schulz, T. M. Klapötke, M. Hargittai, “Intriguing Gold Trifluoride – Molecular Structure of Monomers and Dimers: An Electron Diffraction and Quantum Chemical Study.” J. Am. Chem. Soc. 2000, 122, 3127–3134.

    Article  Google Scholar 

  82. M. Hargittai, A. Schulz, B. Réffy, M. Kolonits, “Molecular Structure, Bonding and Jahn–Teller Effect in Gold Chlorides: Quntum Chemical Study of AuCl3, Au2Cl6, AuCl4 -, AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6.” J.Am. Chem. Soc. 2001, 123, 1449–1458.

    Article  CAS  Google Scholar 

  83. A. Schulz, M. Hargittai, “Structural Variations and Bonding in Gold Halides. AQuantum Chemical Study of Monomeric and Dimeric Gold Monohalide and Gold Trihalide Molecules, AuX, Au2X2, AuX3, and Au2X6 (X = F, Cl, Br, I).” Chem. Eur. J. 2001, 7, 3657–3670.

    Article  CAS  Google Scholar 

  84. Ibid.

    Google Scholar 

  85. I. Hargittai, M. Hargittai, “Edward Teller.” Chemical Intell 1997, 3, 14–23.

    Google Scholar 

  86. R. Renner, “Zur Theorie der Wechselwirkung zwischen Elektronen- und Kernbewegung bei dreiatomigen, stabförmigen Molekülen.“ Z. Phys. 1934, 92, 172–193.

    Article  CAS  Google Scholar 

  87. K. Dressler, D. A. Ramsay, “The Electronic Absorption Spectra of NH2 and ND2.” Phil. Trans. Roy. Soc. London 1959, 251A, 553–602.

    Article  Google Scholar 

  88. Vest et al., Chem. Eur. J. 5130–5143.

    Google Scholar 

  89. J. W. Tracy, N. W. Gregory, E. C. Lingafelter, J. D. Dunitz, H.-C. Mez, R. E. Rundle, C. Scheringer, H. L. Yakel, M. K. Wilkinson, “The crystal structure of chromium(II) chloride.” Acta Cryst. 1961, 14, 927–929.

    Article  CAS  Google Scholar 

  90. Bersuker, Chem. Rev. 1067–1114.

    Google Scholar 

  91. Ibid.

    Google Scholar 

  92. Bersuker, J. Mol. Struct. 44–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdolna Hargittai .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hargittai, M., Hargittai, I. (2009). Electronic Structure of Atoms and Molecules. In: Symmetry through the Eyes of a Chemist. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5628-4_6

Download citation

Publish with us

Policies and ethics