Skip to main content

Discrete Spatial Models

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. V. Borovik, I. M. Gelfand and White, N. (2003). Coxeter matroids. Birkhauser.

    Google Scholar 

  • Aichholzer, O. and Aurenhammer, F. (1996). Classifying hyperplanes in hyper-cubes. SIAM J. Discrete Math., 9:225–232.

    Article  Google Scholar 

  • Bandelt, H.-J. and Pesch, E. (1989). Dismantling absolute retracts of reflexive graphs. European J. Combinatorics, 10:211–220.

    Google Scholar 

  • Bell, J. L. (1986). Anew approach to quantum logic. Brit. J. Phil. Sci., 37:83–99.

    Google Scholar 

  • Biacino, L. and Gerla, G. (1991). Connection structures. Notre Dame J. Formal Logic, 37:431–439.

    Google Scholar 

  • Birkhoff, G. (1948). Lattice Theory, revised edition. Am. Math. Soc. Publications.

    Google Scholar 

  • Birkhoff, G. and von Neumann, J. (1936). The logic of quantum mechanics. Ann. Math., 37:823–843.

    Article  Google Scholar 

  • Björner, A., Vergnas, M. Las, Sturmfels, B., White, N., and Ziegler, G. (1993). Oriented Matroids. Cambridge University Press.

    Google Scholar 

  • Bland, R. G. and Vergnas, M. Las (1978). Orientability of matroids. J. Combin. Theory Ser. B, 24(1):94–123.

    Article  Google Scholar 

  • Brandstädt, A., Le, V., and Spinrad, J. (1999). Graph Classes. SIAM Monographs in Discrete Mathematics and Applications.

    Google Scholar 

  • Brightwell, G. (2000). Gibbs measures and dismantlable graphs. J. Comb. Theory, Series B, 78:141–166.

    Article  Google Scholar 

  • Brown, K. S. (1989). Buildings. Springer-Verlag.

    Google Scholar 

  • Čech, E. (1966). Topological Spaces. John Wiley.

    Google Scholar 

  • Clarke, B. (1981).Acalculus of individuals based on “connection”. Notre Dame J. Formal Logic, pages 204–218.

    Google Scholar 

  • Clarke, B. (1985). Individuals and points. Notre Dame J. Formal Logic, 26: 61–75.

    Article  Google Scholar 

  • Coecke, B., Moore, D., and Wilce, A. (2000). Operational quantum logic:an overview. In Coecke, B., Moore, D., and Wilce, A., editors, Current Research in Operational Quantum Logic: Algebras, Categories, Languages. Kluwer.

    Google Scholar 

  • Cohen, D. W. (1989). An Introduction to Hilbert Space and Quantum Logic. Springer-Verlag.

    Google Scholar 

  • Cohn, A., Bennett, B., Gooday, J., and Gotts, N. (1997). RCC: a calculus for region based qualitative spatial reasoning. GeoInformatica, 1:275–316.

    Article  Google Scholar 

  • Coppel, W. (1998). Foundations of Convex Geometry. Cambridge University Press.

    Google Scholar 

  • Duchet, P. (1988). Convex sets in graphs II, minimal path convexity. J. Combin. Theory Series B, 44:307–316.

    Article  Google Scholar 

  • Duchet, P. and Meyniel, H. (1983). Ensembles convexes dans les graphes I. European J. Combinatorics, pages 127–132.

    Google Scholar 

  • Dvurečenskij, A. and Pulmannová, S. (2000). New Trends in Quantum Structures. Kluwer.

    Google Scholar 

  • Engelking, R. (1989). General Topology. Heldermann, Berlin, revised edition edition.

    Google Scholar 

  • Evako, A., Kopperman, R., and Mukhin, Y. V. (1996). Dimensional properties of graphs and digital spaces. J. Math. Imaging and Vision, 6:109–119.

    Article  Google Scholar 

  • Evako, A. V. (1994). Dimension on discrete spaces. Int. J. Theoretical Physics, 33:1553–1568.

    Article  Google Scholar 

  • Faure, C.-A. and Frölicher, A. (2000). Modern projective geometry. Kluwer.

    Google Scholar 

  • Folkman, J. and Lawrence, J. (1978). Oriented matroids. J. Combin. Theory Ser. B, 25(2):199–236.

    Article  Google Scholar 

  • Foulis, D. J. (1999). A half century of quantum logic: what have we learned? In Aerts, D. and Pykacs, J., editors, Quantum Structures and the Nature of Reality, pages 1–36. Kluwer.

    Google Scholar 

  • Foulis, D. J. and Randell, C. (1971). Lexicographic orthogonality. J. Combinatorial Theory, pages 157–162.

    Google Scholar 

  • Georgatos, K. (2003). On indistinguishability and prototypes. Logic J. of the IGPL, 11:531–545.

    Article  Google Scholar 

  • Hell, P. and Nešetřil, J. (2004). Graphs and Homomorphisma. Oxford University Press.

    Google Scholar 

  • Hurewicz, W. and Wallman, H. (1948). Dimension Theory. Princeton University Press.

    Google Scholar 

  • Kalmbach, G. (1983). Orthomodular Lattices. Academic Press.

    Google Scholar 

  • Khalimsky, E., Kopperman, R., and Meyer, P. (1990). Computer graphics and connected topologies on ordered sets of points. Topology Appl., 35:1–17.

    Article  Google Scholar 

  • Knuth, D. E. (1991). Axioms and Hulls. Lecture Notes in Computer Science 606. Springer-Verlag.

    Google Scholar 

  • Lane, S. Mac and Birkhoff, G. (1967). Algebra. Macmillan, 2nd edition.

    Google Scholar 

  • Lawvere, F. (1991). Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. (Springer) Lect. Notes in Math., 1488:279–281.

    Google Scholar 

  • Markopoulou, F. and Smolin, L. (1997). Causal evolution of spin networks. Nucl. Phys.B508, page 409.

    Google Scholar 

  • Martin, N. N. and Pollard, S. (1996). Closure Spaces and Logic. Kluwer.

    Google Scholar 

  • Oxley, J. (1992a). Infinite matroids. In White, N., editor, Matroid Applications, pages 73–90. Cambridge University Press.

    Google Scholar 

  • Oxley, J. (1992b). Matroid Theory. Oxford University Press.

    Google Scholar 

  • Pagliani, P. (1998). Intrinsic co-Heyting boundaries and informatin incompleteness in rough set analysis. In Polkowski, L. and Skowron, A., editors, RSTC’98, volume 1424 of LNAI, pages 123–130.

    Google Scholar 

  • Penrose, R. (1971). Angular momentum: an approach to combinatorial space-time. In Quantum Theory and Beyond. Cambridge University Press.

    Google Scholar 

  • Pfaltz, J. L. (1996). Closure lattices. Discrete Mathematics, 154:217–236.

    Article  Google Scholar 

  • Poincaré, H. (1905). La Valeur de la Science. Flammarion, Paris.

    Google Scholar 

  • Poston, T. (1971). Fuzzy Geometry. PhD thesis, University of Warwick.

    Google Scholar 

  • Pratt, I. and Lemon, O. (1997). Ontologies for plane, polygonal mereotopology. Notre Dame J. Formal Logic, 38(2):225–245.

    Article  Google Scholar 

  • Prenowitz, W. and Jantosciak, J. (1979). Join Geometries. Springer-Verlag.

    Google Scholar 

  • Pták, P. and Pulmannová, S. (1991). Orthomodular Structures as Quantum Logics. Kluwer.

    Google Scholar 

  • Pultr, A. (1963). An analogon of the fixed-point theorem and its application for graphs. Comment.Math. Univ. Carol.

    Google Scholar 

  • Quilliot, A. (1983). Homomorphismes, points fixes, rétractions et jeux de pour-suite dans les graphes. PhD thesis, Paris.

    Google Scholar 

  • Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic based on regions and connection. In Proc. 2nd Int. Conf. on Knowledge Representation and Reasoning, pages 165–176.

    Google Scholar 

  • Reyes, G. and Zolfaghari, H. (1996). Bi-Heyting algebras, toposes and modalities. J. Philos. Logic, 25.

    Google Scholar 

  • Ronan, M. (1989). Lectures on Buildings. Academic Press.

    Google Scholar 

  • Rosenfeld,A. (1986). “Continuous” functions on digital pictures. Pattern Recog. Letters, 4:177–184.

    Article  Google Scholar 

  • Roy, A. and Stell, J. (2002). A qualitative account of discrete space. In Proc. 2nd Int. Conf. on Geographic Information Science, volume 2478 of LNCS, pages 276–290. Springer.

    Google Scholar 

  • Smolin, L. (2001). Three Roads to Quantum Gravity. Weidenfeld and Nicholson.

    Google Scholar 

  • Smyth, M. B. (1995). Semi-metrics, closure spaces and digital topology. Theoret. Comput. Sci., 151:257–276.

    Article  Google Scholar 

  • Smyth, M. B. (1997). Topology and tolerance. Electron. Notes in Theoret. Comput. Sci.,6.

    Google Scholar 

  • Smyth, M. B. (2000). Region-based discrete geometry. J. Universal Comput. Sci., 6:447–459.

    Google Scholar 

  • Smyth, M. B. and Tsaur, R. (2001–2002). Hyperconvex semi-metric spaces. Topology Proceedings, 26:791–810.

    Google Scholar 

  • Smyth, M. B. and Webster, J. (2002). Finite approximation of stably compact spaces. Applied General Topology, 3:1–28.

    Google Scholar 

  • Sorkin, R. (2002). Causal sets: discrete gravity. In Gomberoff, A. and Marolf, D., editors, Valdivia Summer School, 2002 (to appear).

    Google Scholar 

  • Sossinsky, A. (1986). Tolerance space theory and some applications. Acta Applicandae Math., 5:137–167.

    Article  Google Scholar 

  • Stell, J. (2000). Boolean connection algebras: a new approach to the Region-Connection Calculus. Artificial Intelligence, 122:111–136.

    Article  Google Scholar 

  • Stell, J. and Worboys, M. (1997). The algebraic structure of sets of regions. Lect. Notes in Comp. Sci., 1329:163–174.

    Article  Google Scholar 

  • Stolfi, J. (1991). Oriented projective geometry. Academic Press.

    Google Scholar 

  • Sumner, R. (1974). Dacey graphs. J. Australian Math. Soc., 18:492–502.

    Article  Google Scholar 

  • Tsaur, R. and Smyth, M. (2001). “Continuous” multifunctions in discrete spaces, with applications to fixed point theory. In Bertrand, G., Imiya, A., and Klette, R., editors, Digital and Image Geometry, volume 2243 of LNCS, pages 75–88. Springer.

    Google Scholar 

  • Tsaur, R. and Smyth, M. (2004). Convexity in Helly graphs. In MFCSIT 2004 (to appear).

    Google Scholar 

  • van de Vel, M. (1993). Theory of Convex Structures. Elsevier, Amsterdam.

    Google Scholar 

  • Vergnas, M. Las (1980). Convexity in oriented matroids. J. Combin. Theory Ser. B, 29(2):231–243.

    Article  Google Scholar 

  • Webster, J. (1997). Topology and measure theory in the digital setting: on the approximation of spaces by inverse sequences of graphs. PhD thesis, Imperial College.

    Google Scholar 

  • Webster, R. (1995). Convexity. Oxford University Press.

    Google Scholar 

  • Whitney, H. (1935). On the abstract properties of linear dependence. American Journal of Mathematics, 57:509–533.

    Article  Google Scholar 

  • Wilce, A. (2004). Topological test spaces. To appear in: Int. J. Theor. Physics.

    Google Scholar 

  • Zeeman, E. C. (1962). The topology of the brain and visual perception. In Fort, M. K., editor, Topology of 3-manifolds. Prentice Hall, NJ.

    Google Scholar 

  • Ziegler, G. M. (1995). Lectures on Polytopes. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Smyth, M., Webster, J. (2007). Discrete Spatial Models. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds) Handbook of Spatial Logics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5587-4_12

Download citation

Publish with us

Policies and ethics