Skip to main content

Root growth response and functioning as an adaptation in water limiting soils

  • Chapter
  • 4970 Accesses

Abstract

In this chapter we consider the advantages and disadvantages of different root growth patterns and root functional characteristics in terms of water and nutrient uptake from soils depleted of these resources. Impacts are considered within a framework of analysis which considers crop yield to be a function of water available to the crop during its life cycle, the amount of biomass produced by the crop for every unit of water available and the proportion of the biomass produced going into reproductive yield. Root properties will impact on all of these variables and can therefore impact substantially on yield in conditions where water and nutrients are limiting. We suggest that regulation of this kind can form an effective basis for crop improvement programs focused on dryland environments

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkipova, T.N., Veselov, S.U., Melentiev, A.I., and Kudoyarova, G.R., 2005, Bacillus subtilis to produce cytokinins and to influence growth and endogenous hormone content of lettuce plants. Plant and Soil 272: 201–209

    Article  CAS  Google Scholar 

  • Bacon, M.A., 2004, Water use efficiency in plant biology. In, Water Use Efficiency in Plant Biology. M.A. Bacon, ed., Blackwell, Oxford, pp 1–26.

    Google Scholar 

  • Bengough, A.G., 2003, Root growth and function in relation to soil structure composition and strength. In, Root Ecology. H. de Kroon and EJW Visser, eds., Springer, pp 151–171.

    Google Scholar 

  • Borrell, A., Hammer, G., and van Oosterom, E., 2001, Stay green: a consequence of the balance between supply and demand for nitrogen during grain filling. Ann. Appl.Biol. 138: 91–95.

    Article  Google Scholar 

  • Caldwell, M. M., Dawson, T. E., and Richards, J. H., 1998, Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113: 151–161.

    Article  Google Scholar 

  • Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E- D., 1996, Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 13–18.

    Article  Google Scholar 

  • Clarkson, D.T., Carvajal, M., Henzler, T., Waterhouse, R.N., Smyth, A.M., Cooke, D.T., and Steudle, E., 2000, Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J. Exp.Bot. 51: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Condon, A.G., Richards, R.A., Rebetzke, G.J., and Farquhar, G.D. (2004) Breeding for high water use efficiency J. Exp. Bot.55: 2447–2460.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, I.R., and Farquhar, G.D., 1977, Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 31: 471–505.

    PubMed  CAS  Google Scholar 

  • Davies, W.J., and Gowing, D.J.G., 1999, Plant responses to small perturbations in soil water status. In, Physiological Plant Ecology. M.C. Press et al., eds., Blackwell, Oxford, pp 67–90.

    Google Scholar 

  • Davies WJ Wilkinson S., and Loveys BR, 2002, Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol. 153: 449–460

    Article  Google Scholar 

  • Degenhardt, B., Gimmler, H., Hose, E., and Hartung, W., 2000, Plant and Soil 225: 83–94.

    Article  CAS  Google Scholar 

  • Drew, M.C., 1975, Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system ofand the shoot system of barley. New Phytol. 75: 479–490.

    Article  CAS  Google Scholar 

  • Drew, M.C., and Saker, L.R., 1975, Nutrient supply and the growth of the seminal root system in barley. II Localised, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp.Bot. 26: 79–90.

    Article  CAS  Google Scholar 

  • Fitter, A.H., 1987, An architectural approach to the comparative ecology of plant root systems. New Phytol. 106 (Suppl.): 61–77.

    Article  Google Scholar 

  • Fitter, A.H., Stickland, T.R., Harvey, M.L., and Wilson, G.W., 1991, Architectural analysis of plant root systems. I. Architectural correlates of exploitation efficiency. New Phytol. 118: 375–382.

    Article  Google Scholar 

  • Freundl, E., Steudle, E., and Hartung, W., 1998, Water uptake by roots of maize and sunflower affects the radial transport of abscisic acid and the ABA concentration in the xylem. Planta 209: 8–19.

    Article  Google Scholar 

  • Gersani, M., and Sachs, T., 1992, Developmental correlations between roots in heterogeneous environments. Plant CellEnviron., 15: 463–469.

    Article  Google Scholar 

  • Goss, M.J., 1977, Effects of mechanical impedance on root growth in barley. 1. Effects on the elongation and branching of seminal root axes. J. Exp. Bot.,28: 96–111.

    Article  Google Scholar 

  • Hartung, W., Sauter, A., Turner, N.C., Fillery, I.., and Heilmeier, H., 1996, Abscisic acid in soils: What is its function and which factors and mechanisms influence its concentration? Plant and Soil 184:105–110.

    Article  CAS  Google Scholar 

  • Hutchings, M.J. and John, E.A., 2003, Distribution of roots in soil and root foraging activity. In, Root Ecology. H. de Kroon and EJW Visser, eds., Springer, Heidelberg, pp 33–60.

    Google Scholar 

  • Jia, W. and Davies, W.J., 2007, Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced ABA signals. Plant Physiol., in the press

    Google Scholar 

  • Jia, W., Fan, Y., Ren, H., Davies, W.J., and Zhang, J., 2007, Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit. J. Exp. Bot., in the press.

    Google Scholar 

  • Kutschera, L., 1960, Wurzelatlas mitteleuropaischer Ackerunkrauter und Kulturpflanzen. DLG Verlag, Frankfurt.

    Google Scholar 

  • Kurz-Besson, C., Otieno, D., Lobo do Vale, R., Siegwolf, R., Schmidt, M., Herd, A., Nogueira, C., Soares David, T., Soares David, J., Tenhunen, J., Santos Pereira, J., and Chaves, M.M., 2006, Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant and Soil 282: 361–378.

    Article  CAS  Google Scholar 

  • LeNoble, M.E., Spollen, W.G., and Sharp, R.E., 2004, Maintenance of shoot growth by ABA: genetic assessment of the role of ethylene suppression. J. Exp. Bot.,55,:237–245.

    Article  CAS  Google Scholar 

  • Leuning, R., Condon, A.G., Dunin, F.X., Zegelin, S., and Denmead, O.T., 1994, Rainfall interception and evaporation from soil below a wheat canopy. Agric. Forest Meteorol., 67: 221–238.

    Article  Google Scholar 

  • Martre, P., North, G.B., and Nobel, P.S., 2001, Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting.Plant Physiol., 126: 352–362.

    Article  PubMed  CAS  Google Scholar 

  • Maurel, C., and Chrispeels, M.J., 2001, A molecular entry into plant water relations. Plant Physiol., 125: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed, M.F., Keutgen, N., Tawfik, A.A., and Noga, G., 2002, Dehydration avoidance responses of tepary bean lines differing in drought resistance. J. Plant Physiol. 159: 31–38.

    Article  CAS  Google Scholar 

  • Morgan, J.M., 1980, Possible role of abscisic acid in reducing seed set in water stressed wheat plants. Nature 289: 655–657.

    Article  Google Scholar 

  • Nobel, P.S., and North, G. B., 1993, Rectifier-like behaviour of root-soil systems: new insights from desert succulents. In, Water Deficits, J.A.C. Smith & H Griffiths, eds., Bios Scientific, Oxford. pp 163–176

    Google Scholar 

  • Nobel, P. S., and Sanderson, 1984, Rectifier like activities of roots of two desert succulents. J. Exp. Bot., 35: 727–737.

    Article  Google Scholar 

  • Passioura, J.B., 1972, The effect of root geometry on the yield of wheat growing on stored water. Aust. J. Agric. Res. 23: 745–752.

    Article  Google Scholar 

  • Passioura J B., 1977, Grain yield, harvest index, and water use of wheat. Journal of the Aust.Inst. Agric. Sci., 43: 117–121.

    Google Scholar 

  • Passioura, J.B., 1981, Water collection by roots. In Drought Resistance, Aspinall, D. and Paleg, L. G., eds., Academic Press, New York, pp

    Google Scholar 

  • Passioura, J.B., 1991, Soil structure and plant growth. Aust. J. Soil Res., 29: 717–728.

    Article  Google Scholar 

  • Passioura, J.B., 2004, Water use efficiency in the farmers’ fields. In, Water Use Efficiency in Plant Biology. M.A. Bacon, ed., Blackwell, Oxford. pp 302–321.

    Google Scholar 

  • Penrose, D.M., Moffatt, B.A., and Glick, B.R., 2001, Can. J. Microbiol., 47: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Richards, J. M., and Caldwell, M. M., 1987, Hydraulic lift: substantial nocturnal water transport between layers by Artemisia tridentada roots. Oecologia 73: 486–489.

    Article  Google Scholar 

  • Richards, R.A., and Passioura, J.B., 1981a, Seminal root morphology and water use of wheat I: Environmental effects. Crop Sci., 21: 249–252.

    Google Scholar 

  • Richards, R.A., and Passioura, J.B., 1981b, Seminal root morphology and water use of wheat II: Genetic variation. Crop Sci. 21: 253–255.

    Article  Google Scholar 

  • Richards, R.A., and Passioura, J.B., 1989, A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust. J. Agric. Res. 40: 943–950.

    Article  Google Scholar 

  • Robinson, D., Hodge, A. Griffith, B.S., and Fitter, A.H., 1999, Plant root proliferation in nitrogen rich patches confers competitive advantage. Proc. Roy. Soc. Lond. B. 266: 431–435

    Article  Google Scholar 

  • Robinson, D., Hodge, A., and Fitter, A., 2003, Constraints on the form and function of root systems. In, Root Ecology. H. de Kroon and EJW Visser, esd.,. Springer, Heidelberg, pp 1–31.

    Google Scholar 

  • Ryan, P.R., Delhaize, E., and Jones, D.R., 2001,. Function and mechanism of organic ion exudation from plant roots Ann. Rev. Plant Physiol. Plant Mol. Biol. 52: 527–560.

    Article  CAS  Google Scholar 

  • Sharp, R.E., and Davies, W.J., 1979, Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147: 43–49.

    Article  CAS  Google Scholar 

  • Sharp, R.E., Poroyko, V., Hejlek, L.G., Spollen, W.G., Springer, G.K., Bohnert, H.J., and Nguyen, H., 2004a, Root Growth Maintenance during Water Deficits: Physiology to Functional Genomics. J. Exp. Bot. 55: 2343–2352.

    Article  CAS  Google Scholar 

  • Sharp, R.E., Bonhert, H., and Nguyen, H., 2004, Root growth maintenance during water deficits: physiology to functional genomics J. Exp. Bot.,55: 2343–2351.

    Article  PubMed  CAS  Google Scholar 

  • Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., and Kaldenhoff, R,. 2002, PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell 14: 869–876.

    Article  PubMed  CAS  Google Scholar 

  • Sobeih, W., Dodd, I.C., Bacon, M.A., Grierson, D.C., and Davies, W.J., 2004, Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial rootzone drying. J. Exp.Bot.55: 2353–2364.

    Article  PubMed  CAS  Google Scholar 

  • Sperry, J.S., Hacke, U.G., Oren, R., and Comstock, J.P., 2002, Water deficits and hydraulic limits to leaf water supply. Plant Cell Env. 25: 251–263.

    Article  Google Scholar 

  • Spollen, W.G., and Sharp, R.E., 1991, Spatial distribution of turgor and root growth at low water potentials. Plant Physiol., 96: 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Steudle, E., 2000, Water uptake by roots: effects of water deficit. J. Exp. Bot., 51: 1531–1542.

    Article  PubMed  CAS  Google Scholar 

  • Steudle, E., and Peterson, C.A., 1998, How does water get through roots? J. Exp. Bot.49: 775–788.

    Article  CAS  Google Scholar 

  • Steudle, E., Murrmann, M., and Peterson, C.A., 1993, Transport of water and solutes across amize roots modified by puncturing the endodermis. Further evidence for the composite transport model of the root. Plant Physiol., 103: 335–349.

    PubMed  CAS  Google Scholar 

  • Tardieu, F., 1988, Analysis of the spatial variability of maize root density. II Distances between roots. Plant and Soil 107: 267–272.

    Article  Google Scholar 

  • Tsuda, M., and Tyree, M.T., 2000, Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J. Exp. Bot., 51: 823–828.

    Article  PubMed  CAS  Google Scholar 

  • Tyerman, S. D., Niemetz, C.M.., and Bramley, H., 2002, Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Env. 25: 173–194.

    Article  CAS  Google Scholar 

  • Tyree, M.T., 2003, Hydraulic properties of roots. In, Root Ecology H. de Kroon and EJW Visser., eds., Springer, Heidelberg, pp 125–150.

    Google Scholar 

  • van Herwaarden, A.F., and Passioura, J.B., 2001, Improving estimates of water use efficiency in wheat. Australian Grain 11: 3–5.

    Google Scholar 

  • Wilkinson, S., and Davies, W.J., 1997, Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell which involves the suppression of saturable ABA uptake by the epidermal symplast. Plant Physiol., 113: 559–573

    PubMed  CAS  Google Scholar 

  • Wilkinson, S. and Davies, W.J., 2002, ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Env., 25: 195–210

    Article  CAS  Google Scholar 

  • Zhang, H., and Forde, B.G., 1998, An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279: 407–409.

    Google Scholar 

  • Zhang, J., and Davies, W.J. 1990, Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ., 13: 271–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Davies, W. (2007). Root growth response and functioning as an adaptation in water limiting soils. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_3

Download citation

Publish with us

Policies and ethics