Skip to main content

Abstract

We study interacting dark energy (DE) and cold dark matter (DM) in the context of an inhomogeneous and anisotropic spacetime. DM and DE are modeled as an interactive mixture of inhomogeneous dust (DM) and a generic homogeneous dark energy (DE) fluid. By choosing an “equation of state” linking the energy density (μ) and pressure (p) of the DE fluid, as well as a free function governing the radial dependence, the models become fully determinate and can be applied to known specific DE sources, such as quintessense scalar fields or tachyonic fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. Caldwell, R. Dave and P.J. Steinhardt, Phys. Rev. Lett., 80, 1582, (1995); M.S. Turner and M. White, Phys. Rev. D 56, R4439, (1997); Bahcall et al., Science, 284, 1481, (1999); A.G. Riess, et al., Astron. J. 116, 1009–1038 (1998); S. Perlmutter, et al., Astrophys. J. 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  2. A.G. Riess, et al., Astrophys. J., 536, 62 (2000); A.G. Riess, et al., Astrophys. J., 560, 49–71 (2001); J.L. Tonry, et al., Astrophys. J., 594, 1–24 (2003); A.G. Riess, et al., Astrophys. J., 607, 665–687 (2004); M. Tegmark et. al. astro-ph/0310723; A. Upadhye, M. Ishak and P.J. Steinhardt, astro-ph/0411803.

    Article  ADS  Google Scholar 

  3. T. Padmanabhan, Phys Rept, 380, 235–320, (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. J.A.S. Lima, Braz.J.Phys., 34, 194–200, (2004).

    Google Scholar 

  5. L. Amendola, Phys. Rev. D62(2000) 043511; 063508 (astro-ph/0005070).

    ADS  Google Scholar 

  6. L.P. Chimento, A.S. Jakubi and D. Pavón, Phys. Rev. D, 62, 063508, (2000).

    Article  ADS  Google Scholar 

  7. W. Zimdahl, D. Pavón and L.P. Chimento, Phys Lett B, 521, 133, (2001).

    Article  MATH  ADS  Google Scholar 

  8. L.P. Chimento et. al., Phys Rev D, 67, 083513, (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. L.P. Chimento and A.S. Jakubi, Phys Rev D, 67, 087302, (2003); L.P. Chimento, A.S. Jakubi and D. Pavon, Phys. Rev. D, 67 (2003) 087302.

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Zimdahl and D. Pavón, Gen Rel Gravit, 35, 413, (2003).

    Article  MATH  ADS  Google Scholar 

  11. L.P. Chimento and A.S. Jakubi, Phys Rev D, 69, 083511, (2004).

    Article  ADS  Google Scholar 

  12. A. Krasinski, Inhomogeneous Cosmological Models, Cambridge Univ. Press 1997.

    Google Scholar 

  13. J.A.S. Lima and J. Tiomno, Gen Rel Gravit, 20, 1019, (1988).

    Article  ADS  Google Scholar 

  14. R.A. Sussman, Classical and Quantum Gravity, 9, 1881–1915, (1992).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. J. Halliwell, Phys. Lett. B, 185, 341 (1987); C. Wetterich, Nucl. Phys. B, 302, 668 (1988); D. Wands, E. J. Copeland, and A. R. Liddle, Ann. N. Y. Acad. Sci., 688, 647 (1993). P. G. Ferreira and M. Joyce, Phys. Rev. D, 58, 023503 (1998); L.P. Chimento and A.S. Jakubi, Int J Mod Phys D, 5, 313, (1996).

    Article  ADS  MathSciNet  Google Scholar 

  16. R.A. Sussman, I Quiros, OM González, Gen. Rel. Grav. 37(2005) 2117–2143.

    Article  MATH  ADS  Google Scholar 

  17. G.F.R, Ellis and H. van Elst, Cosmological Models, Cargèse Lectures 1998, gr-qc/9812046.

    Google Scholar 

  18. N. Humphreys, R. Maartens and D. Matravers, Ap J, 477, 47, (1997).

    Article  ADS  Google Scholar 

  19. R. Maartens, G.F.R. Ellis and W.R. Stoeger, Phys Rev D, 51, 1525–1535, (1995); J. Barrow and R. Maartens, Phys Rev D, 59, 043502, (1999).

    Article  ADS  Google Scholar 

  20. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 1993); gr-qc/0103036.

    Google Scholar 

  21. N. Kaloper and K.A. Olive, Phys Rev D 57(1998) 811–822 (hep-th/9708008); L. Amendola, Phys. Rev. Lett. 93 (2004) 181102 (hep-th/0409224).

    Article  ADS  MathSciNet  Google Scholar 

  22. L.P. Chimento, A.S. Jakubi and D. Pavón, Phys Rev D, 60, 103501, (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Sussman, R.A., Quiros, I., González, O.M. (2007). Inhomogeneous Dark Matter in Non-trivial Interaction with Dark Energy. In: Carramiñana, A., Guzmán, F.S., Matos, T. (eds) Solar, Stellar and Galactic Connections Between Particle Physics and Astrophysics. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5575-1_13

Download citation

Publish with us

Policies and ethics