Skip to main content

APPLICATIONS OF FREE-ELECTRON LASERS IN BIOLOGICAL SCIENCES, MEDICINE AND MATERIALS SCIENCE

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 239))

Abstract

advent of broadly tunable free-electron lasers with a combination of high irradiance, low-to-moderate pulse energy, high pulse repetition frequency and high average power has opened new opportunities in materials analysis, modification and processing. This paper describes several such areas, including laser surgery, infrared laser-assisted mass spectrometry, and resonant infrared pulsed laser deposition of polymer thin films.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Prokhorov, “Quantum Electronics,” in Nobel Lectures, Physics 1963–1970 (Elsevier Publishing Company, Amsterdam, 1972).

    Google Scholar 

  2. L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes,” Journal of Applied Physics 88(3), 1281–1298 (2000).

    Article  CAS  Google Scholar 

  3. E. G. Gamaly, A. V. Rode, and B. Luther-Davies, “Ultrafast ablation with high-pulserate lasers. Part I: Theoretical considerations,” Journal of Applied Physics 85(8), 4213–4221 (1999).

    Article  CAS  Google Scholar 

  4. A. V. Rode, E. G. Gamaly, and B. Luther-Davies, “Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation,” Applied Physics A-Materials Science & Processing 70(2), 135–144 (2000).

    Article  CAS  Google Scholar 

  5. G. R. Neil, C. L. Bohn, S. V. Benson, G. Biallas, D. Douglas, H. F. Dylla, R. Evans, J. Fugitt, A. Grippo, J. Gubeli, R. Hill, K. Jordan, G. A. Krafft, R. Li, L. Merminga, P. Piot, J. Preble, M. Shinn, T. Siggins, R. Walker, and B. Yunn, “Sustained kilowatt lasing in a free-electron laser with same-cell,” Physical Review Letters 84(22), 5238–5238 (2000).

    Article  CAS  Google Scholar 

  6. C. A. Brau, “Free-Electron Lasers,” Science 239(4844), 1115–1121 (1988).

    Article  CAS  Google Scholar 

  7. C. A. Brau, “The Vanderbilt-University Free-Electron Laser Center,” Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment 319(1–3), 47–50 (1992).

    Article  Google Scholar 

  8. D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, “1st Operation Of A Free-Electron Laser,” Physical Review Letters 38(16), 892–894 (1977).

    Article  Google Scholar 

  9. G. S. Edwards, D. Evertson, W. Gabella, R. Grant, T. L. King, J. Kozub, M. Mendenhall, J. Shen, R. Shores, S. Storms, and R. H. Traeger, “Free-electron lasers: Reliability, performance, and beam delivery,” IEEE Journal Of Selected Topics In Quantum Electronics 2(4), 810–817 (1996).

    Article  CAS  Google Scholar 

  10. K. Becker, J. B. Johnson, and G. Edwards, “Broad-Band Pockels Cell And Driver For A Mark Iii-Type Free-Electron Laser,” Review Of Scientific Instruments 65(5), 1496–1501 (1994).

    Article  CAS  Google Scholar 

  11. D. R. Ermer, M. R. Papantonakis, M. Baltz-Knorr, D. Nakazawa, and R. F. Haglund, “Ablation of dielectric materials during laser irradiation involving strong vibrational coupling,” Applied Physics A-Materials Science & Processing 70(6), 633–635 (2000).

    CAS  Google Scholar 

  12. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. Oday, “Tissue Ablation By A Free-Electron Laser Tuned To The Amide-II Band,” Nature 371(6496), 416–419 (1994).

    Article  CAS  Google Scholar 

  13. J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Physical Review E 55(6), 7385–7389 (1997).

    Article  CAS  Google Scholar 

  14. M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Physical Review E 65(6), 061906 (2002).

    Article  CAS  Google Scholar 

  15. Y. Nakajima, K. Iwatsuki, K. Ishii, S. Suzuki, T. Fuitnaka, T. Yoshimine, and K. Awazu, “Medical application of an infrared free-electron laser: selective removal of cholesterol ester in carotid artery atheromatous plaques,” Journal Of Neurosurgery 104(3), 426–428 (2006).

    Google Scholar 

  16. N. J. Wu, E. D. Jansen, and J. M. Davidson, “Comparison of mouse matrix metalloproteinase 13 expression in free-electron laser and scalpel incisions during wound healing,” Journal Of Investigative Dermatology 121(4), 926–932 (2003).

    Article  CAS  Google Scholar 

  17. J. B. Robbins, L. Reinisch, and D. L. Ellis, “Wound healing of 6.45-mu m free electron laser skin incisions with heat-conducting templates,” Journal Of Biomedical Optics 8(4), 594–600 (2003).

    Article  Google Scholar 

  18. J. I. Youn, G. M. Peavy, and V. Venugopalan, “Cartilage ablation at 2.79, 2.9, and 6.45 μm using free electron laser: Mass removal studies,” Lasers In Surgery And Medicine, 9–9 (2005).

    Google Scholar 

  19. J. I. Youn, G. M. Peavy, and V. Venugopalan, “A comparison of mass removal and crater morphology produced in cortical bone by ablation using selected mid-infrared wavelengths of a free electron laser,” Lasers In Surgery And Medicine, 14–14 (2006).

    Google Scholar 

  20. B. Ivanov, A. M. Hakimian, G. M. Peavy, and R. F. Haglund, “Mid-infrared laser ablation of a hard biocomposite material: mechanistic studies of pulse duration and interface effects,” Applied Surface Science 208, 77–84 (2003).

    Article  CAS  Google Scholar 

  21. Y. Matsuura, K. Matsuura, and J. A. Harrington, “Power delivery of free electron laser light by hollow glass waveguides,” Applied Optics 35(27), 5395–5397 (1996).

    Article  CAS  Google Scholar 

  22. K. M. Joos, L. A. Mawn, J. H. Shen, and V. A. Casagrande, “Chronic and acute analysis of optic nerve sheath fenestration with the free electron laser in monkeys,” Lasers In Surgery And Medicine 32(1), 32–41 (2003).

    Article  Google Scholar 

  23. K. M. Joos, L. A. Mawn, J. H. Shen, E. D. Jansen, R. D. Robinson, M. A. Mackanos, J. Mavity-Hudson, and V. A. Casagrande, “Human optic nerve sheath fenestration with the free electron laser (FEL),” Lasers In Surgery And Medicine, 47–47 (2005).

    Google Scholar 

  24. K. M. Joos, R. D. Robinson, and J. H. Shen, “Optic nerve sheath fenestration with endoscopic accessory instruments versus the free electron laser (FEL),” Lasers In Surgery And Medicine, 42–42 (2006).

    Google Scholar 

  25. K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers In Surgery And Medicine 27(3), 191–205 (2000).

    Article  CAS  Google Scholar 

  26. G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Review Of Scientific Instruments 74(7), 3207–3245 (2003).

    Article  CAS  Google Scholar 

  27. J. J. Wilmink, J. T. Beckham, S. Opalenik, A. Viehoever, and E. D. Jansen, “Using bioluminescent reporter genes in a novel skin model to temporally and noninvasively monitor gene expression,” Lasers In Surgery And Medicine, 4–4 (2005).

    Google Scholar 

  28. J. S. Chen, B. Shack, L. Reinisch, N. Spector, J. W. Zinsser, N. K. Weisberg, G. P. Stricklin, and D. L. Ellis, “A comparison of scar revision with the free electron and carbon dioxide resurfacing lasers,” Plastic And Reconstructive Surgery 108(5), 1268–1275 (2001).

    Article  CAS  Google Scholar 

  29. J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibiro-cartilage: A wavelength dependence study of thermal injury and crater morphology,” Lasers In Surgery And Medicine 38(3), 218–228 (2006).

    Article  Google Scholar 

  30. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” Journal Of Biomedical Optics 10(6)(2005).

    Google Scholar 

  31. M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Physics In Medicine And Biology 50(8), 1885–1899 (2005).

    Article  Google Scholar 

  32. S. Berkenkamp, F. Kirpekar, and F. Hillenkamp, “Infrared MALDI mass spectrometry of large nucleic acids,” Science 281(5374), 260–262 (1998).

    Article  CAS  Google Scholar 

  33. R. Cramer, W. J. Richter, E. Stimson, and A. L. Burlingame, “Analysis of phospho- and glycopolypeptides with infrared matrix-assisted laser desorption and ionization,” Analytical Chemistry 70(23), 4939–4944 (1998).

    Article  CAS  Google Scholar 

  34. B. A. Budnik, K. B. Jensen, T. J. D. Jorgensen, A. Haase, and R. A. Zubarev, “Benefits of 2.94 mu m infrared matrix-assisted laser desorption/ionization for analysis of labile molecules by Fourier transform mass spectrometry,” Rapid Communications in Mass Spectrometry 14(7), 578–584 (2000).

    Article  CAS  Google Scholar 

  35. K. Strupat, M. Karas, F. Hillenkamp, C. Eckerskorn, and F. Lottspeich, “Matrix- Assisted Laser-Desorption Ionization Mass-Spectrometry of Proteins Electroblotted after Polyacrylamide-Gel Electrophoresis,” Analytical Chemistry 66(4), 464–470 (1994).

    Article  CAS  Google Scholar 

  36. T. Lippa, N. I. Taranenko, C. R. Prasad, and V. M. Doroshenko, “Infrared matrixassisted laser desorption/ionization quadrupole ion trap mass spectrometry,” European Journal of Mass Spectrometry 8(3), 263–271 (2002).

    Article  CAS  Google Scholar 

  37. R. Cramer and A. L. Burlingame, “IR-MALDI – Softer Ionization in MALDI-MS for Studies of Labile Macromolecules,” in Mass Spectrometry in Biology & Medicine, A. L. Burlingame, S. A. Carr, and M. A. Baldwin, eds. (Humana Press, Totowa NJ, 2000), pp. 289–307.

    Google Scholar 

  38. M. L. Baltz-Knorr, K. E. Schriver, and R. F. Haglund, “Infrared laser ablation and ionization of water clusters and biomolecules from ice,” Applied Surface Science 197–198, 11–16 (2002).

    Article  Google Scholar 

  39. M. Baltz-Knorr, D. R. Ermer, K. E. Schriver, and R. F. Haglund, “Infrared laser desorption and ionization of polypeptides from a polyacrylamide gel,” Journal of Mass Spectrometry 37(3), 254–258 (2002).

    Article  CAS  Google Scholar 

  40. J. Gross and K. Strupat, “Matrix-assisted laser desorption/ionisation mass spectrometry applied to biological macromolecules,” Trac-Trends in Analytical Chemistry 17(8–9), 470–484 (1998).

    Article  CAS  Google Scholar 

  41. S. Berkenkamp, C. Menzel, M. Karas, and F. Hillenkamp, “Performance of infrared matrix-assisted laser desorption/ionization mass spectrometry with lasers emitting in the 3 mu m wavelength range,” Rapid Communications in Mass Spectrometry 11(13), 1399–1406 (1997).

    Article  CAS  Google Scholar 

  42. M. W. Little, J. K. Kim, and K. K. Murray, “Two-laser infrared and ultraviolet matrixassisted laser desorption/ionization,” Journal of Mass Spectrometry 38(7), 772–777 (2003).

    Article  CAS  Google Scholar 

  43. L. Stryer, Biochemistry, 4th ed. (W. H. Freeman, New York, 1995), p. 1064.

    Google Scholar 

  44. J. S. Klassen, S. G. Anderson, and A. T. Blades, “Reaction enthalpies for M+L = M+ + L, where M+ = Na+ and K+ and L = acetamide, n-methylacetamide, N,Ndimethylacetamide, glycine, and glycylglycine, from determinations of the collision-induced dissociation thresholds,” Journal of Physical Chemistry 100, 14218–14227 (1996).

    Article  CAS  Google Scholar 

  45. D. A. Griffith and A. M. Pajor, “Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1,” Biochemistry 38(23), 7524–7531 (1999).

    Article  CAS  Google Scholar 

  46. B. C. Guo, B. J. Conklin, and A. W. Castleman, Jr., “Thermochemical properties of ion complexes Na+(M)n in the gas phase,” Journal of the American Chemical Society 111(17), 6506–6510 (1989).

    Article  CAS  Google Scholar 

  47. J. Zhang, T.-K. Ha, R. Knochenmuss, and R. Zenobi, “Theoretical Calculation of Gas- Phase Sodium Binding Energies of Common MALDI Matrices,” Journal of Physical Chemistry A 106(28), 6610–6617 (2002).

    Article  CAS  Google Scholar 

  48. J. Zhang, R. Knochenmuss, E. Stevenson, and R. Zenobi, “The gas-phase sodium basicities of common matrix-assisted laser desorption/ionization matrices,” International Journal of Mass Spectrometry 213(2–3), 237–250 (2002).

    Article  CAS  Google Scholar 

  49. G. Ohanessian, “Interaction of MALDI matrix molecules with Na+ in the gas phase,” International Journal of Mass Spectrometry 219(3), 577–592 (2002).

    Article  CAS  Google Scholar 

  50. S. C. Goheen, K. L. Wahl, J. A. Campbell, and W. P. Hess, “Mass spectrometry of low molecular mass solids by matrix-assisted laser desorption/ionization,” Journal of Mass Spectrometry 32(8), 820–828 (1997).

    Article  CAS  Google Scholar 

  51. M. Karas, A. Ingendoh, U. Bahr, and F. Hillenkamp, “Ultraviolet-laser desorption/ionization mass spectrometry of femtomolar amounts of large proteins,” Biomedical Environmental Mass Spectrometry 18(9), 841–843 (1989).

    Article  CAS  Google Scholar 

  52. F. Dubois, R. Knochenmuss, R. Steenvoorden, K. Breuker, and R. Zenobi, “On the mechanism and control of salt-induced resolution loss in matrix-assisted laser desorption/ionization,” European Mass Spectrometry 2(2–3), 167–172 (1996).

    CAS  Google Scholar 

  53. W. Z. Zhang, S. F. Niu, and B. T. Chait, “Exploring infrared wavelength matrixassisted laser desorption/ionization of proteins with delayed-extraction time- of-flight mass spectrometry,” Journal of the American Society for Mass Spectrometry 9(9), 879–884 (1998).

    Article  CAS  Google Scholar 

  54. J. E. Meacham, A. B. Webb, M. G. Plys, S. J. Lee, J. M. Grigsby, P. G. Heasler, J. L. Bryant, J. J. Toth, and P. M. Daling, “Safety Criteria for the Organic Watch List Tanks at the Hanford Site,” WHC-SD-WM-SARR-033 (Westinghouse Hanford Company, Richland, WA, 1996).

    Google Scholar 

  55. W. P. Hess, H. K. Park, O. Yavas, and R. F. Haglund Jr., “IR-MALDI of low molecular weight compounds using a free electron laser,” Applied Surface Science 127–129, 235–241 (1998).

    Article  Google Scholar 

  56. M. R. Papantonakis, D. R. Ermer, and R. F. Haglund Jr., “Picosecond infrared matrixassisted laser desorption/ionization mass spectrometry of organic molecules on sodium nitrate crystallites,” Applied Surface Science 197–198, 213–216 (2002).

    Article  Google Scholar 

  57. R. F. Haglund, M. Baltz-Knorr, D. R. Ermer, M. R. Papantonakis, and K. E. Schriver, “Laser mass spectrometry at high vibrational excitation density,” Spectrochimica Acta, Submitted (2003).

    Google Scholar 

  58. D. M. Bubb, J. S. Horwitz, J. H. Callahan, R. A. McGill, E. J. Houser, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, M. C. Galicia, and A. Vertes, “Resonant infrared pulsed-laser deposition of polymer films using a free-electron laser,” Journal Of Vacuum Science & Technology A-An International Journal Devoted To Vacuum Surfaces And Films 19(5), 2698–2702 (2001).

    Article  CAS  Google Scholar 

  59. D. M. Bubb, M. R. Papantonakis, B. Toftmann, J. S. Horwitz, R. A. McGill, D. B. Chrisey, and R. F. Haglund, “Effect of ablation parameters on infrared pulsed laser deposition of poly(ethylene glycol) films,” Journal Of Applied Physics 91(12), 9809–9814 (2002).

    Article  CAS  Google Scholar 

  60. D. M. Bubb, M. R. Papantonakis, J. S. Horwitz, R. F. Haglund, B. Toftmann, R. A. McGill, and D. B. Chrisey, “Vapor deposition of polystyrene thin films by intense laser vibrational excitation,” Chemical Physics Letters 352(3–4), 135–139 (2002).

    Article  CAS  Google Scholar 

  61. D. M. Bubb, J. S. Horwitz, R. A. McGill, D. B. Chrisey, M. R. Papantonakis, R. F. Haglund, and B. Toftmann, “Resonant infrared pulsed-laser deposition of a sorbent chemoselective polymer,” Applied Physics Letters 79(17), 2847–2849 (2001).

    Article  CAS  Google Scholar 

  62. D. M. Bubb, B. Toftmann, R. F. Haglund, J. S. Horwitz, M. R. Papantonakis, R. A. McGill, P. W. Wu, and D. B. Chrisey, “Resonant infrared pulsed laser deposition of thin biodegradable polymer films,” Applied Physics A-Materials Science & Processing 74(1), 123–125 (2002).

    Article  CAS  Google Scholar 

  63. B. Toftmann, M. R. Papantonakis, R. C. Y. Auyeung, W. Kim, S. M. O’Malley, D. M. Bubb, J. S. Horwitz, J. Schou, P. M. Johansen, and R. E. Haglund, “UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films,” Thin Solid Films 453–54, 177–181 (2004).

    Article  CAS  Google Scholar 

  64. R. F. Haglund, Jr., D. M. Bubb, D. R. Ermer, J. S. Horwitz, E. J. Houser, G. K. Hubler, B. Ivanov, M. R. Papantonakis, B. R. Ringeisen, and K. E. Schriver, “Resonant Laser Materials Processing at High Vibrational Excitation Density: Applications and Mechanisms,” presented at the Laser Precision Micromanufacturing, Munich, Germany, 2003.

    Google Scholar 

  65. N. L. Dygert, K. E. Schriver, and R. F. Haglund, Jr., “Vaporization and deposition of an intact polyimide precursor by resonant infrared laser ablation,” presented at the Photonics West: Laser-Based Micropackaging, San Jose, CA, 2006.

    Google Scholar 

  66. M. R. Papantonakis and R. F. Haglund, “Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene),” Applied Physics A-Materials Science & Processing 79(7), 1687–1694 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

HAGLUND, R.F. (2006). APPLICATIONS OF FREE-ELECTRON LASERS IN BIOLOGICAL SCIENCES, MEDICINE AND MATERIALS SCIENCE. In: Dubowski, J.J., Tanev, S. (eds) Photon-based Nanoscience and Nanobiotechnology. NATO Science Series, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5523-2_8

Download citation

Publish with us

Policies and ethics