Skip to main content

Abstract

Plants are among the most tolerant of organisms to pollution, which emphasises their utility for the emerging science of environmental biotechnology. Many botanical families, in particular the Brassicaceae, Poaceae, Fabaceae, Asteraceae, Salicaceae, Chenopodiaceae, and Careophylaceae include multiple species showing phytoremediation potential, and other families (Cyperaceae, Amaranthaceae, Cannabaceae, Cannaceae, Typhaceae and Pontederiaceae) contain promising individual species: Each species enjoys certain advantages, but suffers some limitations for application as phytoremediants. Careful selection of the appropriate family and genotype to match the particular pollutant and environment is crucial for successful phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson C. W. N., Brooks R. R., Stewart R. B., and Simcock R., 1998, Harvesting a crop of gold in plants, Nature 395:553–554.

    Article  CAS  Google Scholar 

  • Bakker M. I., Vorehout M., Sum D. T. H. M., and Kolloffel C., 1999, Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three Plantago species. Environ. Toxicol. Chem. 10:289–2294.

    Google Scholar 

  • Brooks R. R., 1998, Plants that hyperaccumulate heavy metals, CAB International, University Press, Cambridge.

    Google Scholar 

  • Chaney R. L., Angle J. S., Wang A. S., McIntosh M.S., Broadhurst L., and Reeves R. D., 2005, Phytoextraction of soil Cd, Ni and Zn using hyperaccumulator plants to alleviate risks of metal contaminated soils requiring remediation. International Workshop Current developments in remediation of contaminated lands p. 39, 27–29 October 2005. Pulawy, Poland.

    Google Scholar 

  • Cobbett C. S., 2000, Phytochelatins and their role in heavy metal detoxification, Plant Physiol. 123:825–832.

    Article  CAS  Google Scholar 

  • Fletcher J. S., and Hegde R. S., 1995, Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016.

    Article  CAS  Google Scholar 

  • Goldsbrough P., 2000, Metal tolerance in plants: The role of phytochelatins and metallothioneins, in: Phytoremediation of contaminated soil and water, N. Terry, G. Banuelos, eds, Lewis Publishers, Boca Raton.

    Google Scholar 

  • Harms H., Bokern M., Kolb M., and Bock C., 2003, Transformation of organic contaminants by different plant system, in: Phytoremediation; Transformation and control of contaminants, S. C. McCutcheon, J. L. Schnoor, eds., John Wiley & Sons, Inc., Hoboken, New Jersey.

    Google Scholar 

  • Hermanson M. H., and Hites R. A., 1990, Polychlorinated biphenyls in tree bark, Environ. Sci. Technol. 24:666–671.

    Article  CAS  Google Scholar 

  • Ma Q. L., Komar K. M., Tu C., Zhang W., Cai Y., and Kennelley E. D., 2001, A fern that hyperaccumulates arsenic, Nature 409:579.

    Article  CAS  Google Scholar 

  • Newman A. L., Strand S. E., Choe N., Duffy J., Ekuan G., Ruszaj M., Shurtleff B. B., Wilmoth J., Heilman P., and Gordon M. P., 1997, Uptake and biotransformation of trichloroethylene by hybrid poplar, Environ. Sci. Technol. 31:1062–1067.

    Article  CAS  Google Scholar 

  • Morikawa H., Higaki A., Nohno M., Takahashi M., Kamada M., Nakata M., Toyohara G., Okamura Y., Matsui K., Kitani S., Fujita K., Irifune K., and Goshima N., 1999, More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa, Plant Cell Environ. 21:180–190.

    Article  Google Scholar 

  • Orcutt D. M., and Nilsen E.T., 2000, The physiology of plants under stress, John Wiley & Sons Inc., New York.

    Google Scholar 

  • Piechalak A., Tomaszewska B., Baralkiewicz D., and Malecka A., 2002, Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162.

    Article  CAS  Google Scholar 

  • Pulford I. D., Riddel-Black D., and Stewart C., 2002, Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. Int. J. Phytorem. 4:59–72.

    Article  CAS  Google Scholar 

  • Rauser W. E., 1995, Phytochelatins and related peptides, Plant Physiol. 109:1141–1149.

    Article  CAS  Google Scholar 

  • Sell J., Kayser A., Schulin R., and Brunner I., 2005, Contribution of ectomicorrhizal fungi to cadium uptake of poplar and willows from a havey polluted soil, Plant Soil 277:245–253.

    Article  CAS  Google Scholar 

  • Staci L. S., and Hites R. A., 1994, Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere, Nature 370:49–51.

    Article  Google Scholar 

  • White P. M., Wolf D. C., Thoma G. J., and Reynolds C. M., 2006, Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil, Water Air Soil Pollut. 160:207–220.

    Article  Google Scholar 

  • Winska-Krysiak M., and Gawronski S. W., 2002, Fizjologiczne aspekty tolerancji i hiperakumulacji ołowiu w wybranych genotypach Brassica. [Physiological aspects of lead tolerance and hyperaccumulationin Brassica species]. Zeszyty Problemowe Postepów Nauk Rolniczych 481:605–613.

    Google Scholar 

  • Wolverton B. C., 1997, How to grow fresh air: 50 house plants that purify your home or office, Penguin. 144 p. New York, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

GAWRONSKI, S.W., GAWRONSKA, H. (2007). PLANT TAXONOMY FOR PHYTOREMEDIATION. In: Marmiroli, N., Samotokin, B., Marmiroli, M. (eds) Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents. NATO Science Series: IV: Earth and Environmental Sciences, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5520-1_5

Download citation

Publish with us

Policies and ethics