Skip to main content

Executive Summary and Introduction

  • Chapter
  • 643 Accesses

Abstract

Systems biology has become a major force in the past five to seven years. As with all new developments in science, the emergence of new approaches is a result of limitations in the existing model, in this case the limitations of molecular biology. For the past 40 years the paradigm for predicting phenotype has focused on single gene defects. This extraordinarily powerful approach has been the major contributor to an understanding of the function of individual genes and proteins. It seems less likely that it will yield an understanding of complex biological behavior, from individual cellular activities such as motility to the operation and integration of organ systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Arkin, A., J. Ross, H. H. McAdams. 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633–48.

    Google Scholar 

  • Barkai, N., S. Leibler. 1997. Robustness in simple biochemical networks. Nature 387: 913–7.

    Article  Google Scholar 

  • Goldbeter, A. 2002. Computational approaches to cellular rhythms. Nature 420: 238–45.

    Article  Google Scholar 

  • Hamilton, J. 2005. “A Life of Discovery”, cited in NYT Book Reviews, p. 16, March 13, 2005.

    Google Scholar 

  • Heinrich, R., S. M. Rapoport, and T. A. Rapoport. 1977. Metabolic regulation and Mathematical Models. Prog Biophys Mol Biol 32: 1–82.

    Article  MathSciNet  Google Scholar 

  • Hlavacek W. S., M. A. Savageau. 1996. Rules for coupled expression of regulator and effector genes in inducible circuits. J Mol Biol 255: 121–39.

    Article  Google Scholar 

  • Kacser, H. and J. A. Burns. 1973. The Control of Flux. Symp Soc Exp Biol 27: 65–104.

    Google Scholar 

  • Kanehisa, M. 2000. Pathway databases and higher order function. Adv Protein Chem 54: 381–408.

    Article  Google Scholar 

  • Kitano, H. 2002. Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41: 1–10.

    Article  Google Scholar 

  • Levin, M. D., C. J. Morton-Firth, W. N. Abouhamad, R. B. Bourret, D. Bray. 1998. Origins of individual swimming behavior in bacteria. Biophys J 74: 175–81.

    Article  Google Scholar 

  • Kohl, P. D., R. L. Noble, R. L. Winslow, and P. Hunter. 2000. Computational modeling of biological systems: tools and visions. Phil Trans R.Soc Lond A 358: 576–610.

    Google Scholar 

  • Lauffenburger, D. A., K. E. Forsten, B. Will, H. S. Wiley. 1995. Molecular/cell engineering approach to autocrine ligand control of cell function. Ann Biomed Eng 23: 208–15.

    Article  Google Scholar 

  • McAdams, H. H., L. Shapiro. 1995. Circuit simulation of genetic networks. Science 269: 650–6.

    Article  Google Scholar 

  • McCulloch, A., J. Bassingthwaighte, P. Hunter, D. Noble. 1998. Computational biology of the heart: from structure to function. Prog Biophys Mol Biol 69: 153–5.

    Article  Google Scholar 

  • Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter, C. A. Hutchison 3rd. 1999. E-CELL: software environment for whole-cell simulation. Bioinformatics 15: 72–84.

    Article  Google Scholar 

  • Westerhoff, H. V. 1995. Subtlety in control—metabolic pathway engineering. Trends Biotechnol 13: 242–4.

    Article  Google Scholar 

  • Wolf, J., R. Heinrich. 1997. Dynamics of two-component biochemical systems in interacting cells; synchronization and desynchronization of oscillations and multiple steady states. Biosystems 43: 1–24.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Cassman, M. (2007). Executive Summary and Introduction. In: CASSMAN, M., ARKIN, A., DOYLE, F., KATAGIRI, F., LAUFFENBURGER, D., STOKES, C. (eds) Systems Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5468-6_1

Download citation

Publish with us

Policies and ethics