Skip to main content

Modelling the Thermal Response of Composites in Fire

  • Chapter

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 143))

Abstract

The thermal decomposition of fibre reinforced polymer composites in fire is a complex topic that involves the combined effects of thermal, chemical and physical processes. The thermal processes include heat conduction from the fire through the composite; heat generated or absorbed from the decomposition reactions of the polymer matrix, organic fibres and core material; heat generated by the ignition of flammable reaction gases; and convective heat loss from the egress of hot reaction gases and moisture vapours from the composite into the fire. The chemical processes include thermal softening, melting, pyrolysis and volatilisation of the polymer matrix, organic fibres and core material together with the formation, growth and oxidation of char. The physical processes can involve thermal expansion and contraction, internal pressure build-up due to the formation of volatile gases and vaporisation of moisture; thermally-induced strains; delamination damage; matrix cracking; surface ablation; and softening, melting and fusion of fibres. Many of these processes do not occur in isolation from each other, but usually influence other processes that add to the complexity of the behaviour of composites in fire. Understanding these processes and how they interact is essential to understanding the fire reaction and fire resistive properties of composite materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ramamurthy, F.L. Test, J. Florio and J.B. Henderson. Internal pressure and temperature distribution in decomposing polymer composites. In: Proceedings of the Ninth Heat Transfer Conference, Jerusalem, Israel, August 1990.

    Google Scholar 

  2. Y.I. Dimitrienko. Thermomechanical behaviour of composite materials and structures under high temperatures: 2. Structures. Composites, 1997; 28A:463–471.

    Google Scholar 

  3. M. Ladacki. Silicon carbide in ablative chars. Journal of the American Institute of Aeronautics & Astronautics, 1966; 4:1445–1447.

    CAS  Google Scholar 

  4. C.H. Bamford and D.H. Malan. The combustion of wood, Part 1. Proceedings of the Cambridge Philosophical Society, 1946; 42:166–182.

    Article  CAS  Google Scholar 

  5. T.R. Munson and R.J. Spindler. Transient thermal behaviour of decomposing materials: Part 1 General theory and application to convective heating. RAD-TR-61-10, AVCO Corporation, May 1961.

    Google Scholar 

  6. K.A. Murty. Thermal decomposition kinetics of wood pyrolysis. Combustion & Flame, 1977; 29:311–324.

    Article  Google Scholar 

  7. H.C. Kung. A mathematical model of wood pyrolysis. Combustion & Flame, 1972; 18:185–195.

    Article  Google Scholar 

  8. E.J. Kansa, H.E. Perlee and R.F. Chaiken. Mathematical model of wood pyrolysis including internal forced convection. Combustion & Flame, 1977; 29:311–324.

    Article  Google Scholar 

  9. B. Fredlund. Modelling of heat and mass transfer in wood structures during fire. Fire Safety Journal, 1993; 20:39–69.

    Article  Google Scholar 

  10. J.B. Henderson, J.A. Wiebelt and M.R. Tant. A model for the thermal response of polymer composite materials with experimental verification. Journal of Composite Materials, 1985; 19:579–595.

    Article  CAS  Google Scholar 

  11. MR Tant, JB Henderson and CT Boyer. Measurement and modelling of the thermochemical expansion of polymer composites. Composites, 1985; 16:121–126.

    Article  CAS  Google Scholar 

  12. J.B. Henderson and M.R. Tant. Measurement of thermal and kinetic properties of a glass-filled polymer composite to high temperatures. High Temperatures-High Pressures, 1996; 18:17–28.

    Google Scholar 

  13. J.B. Henderson and M.P. Doherty. Measurement of selected properties of a glass-filled polymer composite. High Temperatures-High Pressures, 1987; 19:95–102.

    CAS  Google Scholar 

  14. J.B. Henderson and T.E. Wiecek. A mathematical model to predict the thermal response of decomposing, expanding polymer composites. Journal of Composite Materials, 1987; 21:373–393.

    Article  CAS  Google Scholar 

  15. J. Florio, J.B. Henderson and F.L. Test. Measurement of the thermochemical expansion of porous composite materials. High Temperatures — High Pressures, 1989; 21:157–165.

    CAS  Google Scholar 

  16. J. Florio, J.B. Henderson, F.L. Test and R. Hariharan. A study of the effects of the assumption of local-thermal equilibrium on the overall thermally-induced response of a decomposition, glass-filled polymer composite. International Journal of Heat & Mass Transfer, 1991; 34:135–147.

    Article  CAS  Google Scholar 

  17. R.M. Sullivan. A finite element method for thermochemically decomposing polymers, PhD dissertation, The Pennsylvania State University, 1990.

    Google Scholar 

  18. R.M. Sullivan and N.J. Salamon. A finite element method for the thermochemical decomposition of polymeric materials — I. Theory. International Journal of Engineering Science, 1992; 30:431–441.

    Article  CAS  Google Scholar 

  19. R.M. Sullivan and N.J. Salamon. A finite element method for the thermochemical decomposition of polymeric materials — II. Carbon phenolic composites. International Journal of Engineering Science, 1992; 30:939–951.

    Article  CAS  Google Scholar 

  20. R.M. Sullivan. A coupled solution method for predicting the thermostructural response of decomposing, expanding polymeric composites. Journal of Composite Materials, 1993; 27:408–434.

    Article  CAS  Google Scholar 

  21. G.A. Pering, P.V. Farrell and G.S. Springer. Degradation of tensile and shear properties of composites exposed to fire or high temperature. Journal of Composite Materials, 1980; 14:54–66.

    CAS  Google Scholar 

  22. H.L. McManus and G.S. Springer. High temperature behaviour of thermomechanical behaviour of carbon-phenolic and carbon-carbon composites, I. Analysis. Journal of Composite Materials, 1992;26:206–229.

    Article  CAS  Google Scholar 

  23. H.L. McManus and G.S. Springer. High temperature behaviour of thermomechanical behaviour of carbon-phenolic and carbon-carbon composites, II. Results. Journal of Composite Materials, 1992;26:230–255.

    Article  CAS  Google Scholar 

  24. Y.I. Dimitrienko. Thermal stresses and heat-mass-transfer in ablating composite materials. International Journal of Heat and Mass Transfer, 1995; 38:139–146.

    Article  CAS  Google Scholar 

  25. Y.I. Dimitrienko. Thermomechanical behaviour of composite materials and structures under high temperatures: 1. Materials. Composites, 1997; 28A:453–461.

    CAS  Google Scholar 

  26. A.G. Gibson, Y-S. Wu, H.W. Chandler, J.A.D. Wilcox and P. Bettess. A model for the thermal performance of thick composite laminates in hydrocarbon fires. Revue de L’Institut Francais du Petrole, 1995; 50:69–74.

    CAS  Google Scholar 

  27. N. Dodds, A.G. Gibson, D. Dewhurst and J.M. Davies. Fire behaviour of composite laminates. Composites, 2000; 31A:689–702.

    CAS  Google Scholar 

  28. A.P. Mouritz, A.G. Gibson, Y. Wu, C.P. Gardiner and Z. Mathys. Validation of the Gibson model for the fire reaction properties of fibre-polymer composites., Fire & Materials, (in press).

    Google Scholar 

  29. C.I. Chang. Thermal effects on polymer composite structures. Theoretical & Applied Fracture Mechanics, 1986; 6:113–120.

    Article  Google Scholar 

  30. C.A. Griffis, J.A. Nemes, F.R. Stonesifer and C.I. Chang. Degradation in strength of laminated composites subjected to intense heating and mechanical loading. Journal of Composite Materials, 1986;20:216–235.

    Article  CAS  Google Scholar 

  31. J.A. Charles and D.W. Wilson. A model for passive thermal nondestructive evaluation of composite laminates. Polymer Composites, 1981; 2:105–111.

    Article  CAS  Google Scholar 

  32. J. Milke and A.J. Vizzini. Thermal response of fire-exposed composites. Journal of Composites Technology & Research, 1991; 13:145–151.

    CAS  Google Scholar 

  33. R.J. Asaro, M. Dao and N. Schultz. Fire protection techniques for commerical vessels: structural fire protection modelling. Flame Retardant Polymers, 1998; 113–127.

    Google Scholar 

  34. C.A. Griffis, R.A. Masumura and C.I. Chang. Thermal response of graphite epoxy composites subjected to rapid heating. Journal of Composite Materials, 1981; 15:427–442.

    Article  Google Scholar 

  35. M.R.E. Looyeh, P. Bettess and A.G. Gibson. A one-dimensional finite element simulation for the fireperformance of GRP panels for offshore structures. International Journal of Numerical Methods for Heat & Fluid Flow, 1997; 7:609–625.

    Article  CAS  Google Scholar 

  36. M.R.E. Looyeh and P. Bettess. A finite element model for the fire-performance of GRP panels including variable thermal properties. Finite Elements in Analysis & Design, 1998; 30:313–324.

    Article  Google Scholar 

  37. G.T. Boyer and W.C. Thomas. An analytical investigation of charring composites undergoing thermochemical expansion. In: Proceedings of the ASME National Heat Transfer Conference, Denver, Colorado, August 1985, Paper 85-HT-54.

    Google Scholar 

  38. J.D. Buch. Thermal expansion behavior of a thermally degrading organic matrix composite. In: Thermomechanical Behavior of High-Temperature Composites, ASME Publication AD-04, 1982, ASME, New York, pp. 35–49.

    Google Scholar 

  39. C.G. Goetzel. High-temperature properties of some reinforced phenolic composites. High Temperatures-High Pressures, 1980; 12:131–146.

    CAS  Google Scholar 

  40. M.E. Tuttle, A.M. Mescher and M.L. Potocki. Mechanics of polymeric composites exposed to a constant heat flux. Journal of the American Society of Mechanical Engineers, 1997; 80:157–164.

    CAS  Google Scholar 

  41. M.L. Potocki, M.E. Tuttle and A.M. Mescher. Behaviour of polymeric composites exposed to a heat flux simulating fire. In: Proceedings of the Conference on the Mechanical Behaviour of Advanced Materials, ASME, 1998, pp. 325–332.

    Google Scholar 

  42. C.S. Vatikiotis and D. Salinas. Heat transfer in a fibrous composite with combustion. In: Proceedings of the ASME/AIChE National Heat Transfer Conference, Orlando, Florida, 27–30 July 1980.

    Google Scholar 

  43. D. Salinas, Y.W. Kwon and E.A. Faxlanger. Failure of unidirectional composites exposed to fires. In: Proceedings of Non-Classical Problems of the Theory and Behavior of Structures Exposed to Complex Environmental Conditions, AMD Vol 164, American Society of Mechanical Engineers, 1993, pp. 115–128.

    Google Scholar 

  44. M.R.E. Looyeh, K. Rados and P. Bettess. Thermomechanical responses of sandwich panels to fire. Finite Elements in Analysis & Design, 2001; 37:913–927.

    Article  Google Scholar 

  45. P. Krysl, W. Ramroth and R.J. Asaro. FE modelling of FRP sandwich panels exposed to heat: uncertainty analysis. In: Proceedings of the SAMPE Technical Conference, 16–20 May 2004, Long Beach CA.

    Google Scholar 

  46. G. Springer and S. Tsai. Thermal conductivity of unidirectional materials. Journal of Composite Materials, 1967; 1:166–173.

    Article  CAS  Google Scholar 

  47. R.C. Progelhof, J.L. Throne and R.R. Ruetsch. Methods for predicting the thermal conductivity of composite systems: A review. Polymer Engineering & Science, 1976; 16:9.

    Google Scholar 

  48. L. Han and A. Cosner. Effective thermal conductivities of fibrous composites. Journal of Heat Transfer, 1981; 103:387–392.

    Article  Google Scholar 

  49. H.-J. Ott. Thermal conductivity of composite materials. Plastics, Rubber Processing and Applications, 1981; 1:9–24.

    CAS  Google Scholar 

  50. J.P. Fanucci. Thermal response of radiantly heated kevlar and graphite/epoxy composites. Journal of Composite Materials, 1987; 21:129–139.

    Article  CAS  Google Scholar 

  51. B. James, G. Wostenholm, G. Keen and S. McIvor. Prediction and measurement of the thermal conductivity of composite materials. Journal of Physics D: Applied Physics, 1987; 261–268.

    Google Scholar 

  52. C. Havis, G. Peterson and L. Flectcher. Predicting the thermal conductivity and temperature distribution in aligned fiber composites. Journal of Thermophysics, 1989; 3:416–422.

    Article  CAS  Google Scholar 

  53. Y. Gowayed, J.-C. Hwang and D. Chapman. Thermal conductivity of textile composites with arbitrary preform structures. Journal of Composites Technology & Research, 1995; 17:56–62.

    Google Scholar 

  54. H. Tai. Equivalent thermal conductivity of two-and three-dimensional orthogonally fiber-reinforced composites in one-dimensional heat flow. Journal of Composites Technology & Research, 1996; 18:221–227.

    Article  CAS  Google Scholar 

  55. G. Kalagiannakis, D. Van Hemelrijck and G. Van Assche. Measurements of thermal properties of carbon/epoxy and glass/epoxy using modulated temperature differential scanning calorimetry. Journal of Composite Materials, 2004; 38:163–174.

    Article  CAS  Google Scholar 

  56. W. Knappe, H.-J. Ott and G. Wagner. Calculation and measurement of the thermal conductivity of GRP. Kunststoffe, 1978; 68:13.

    Google Scholar 

  57. M.N. Ozisik. Basic Heat Transfer, Tokyo: McGraw-Hill Kogakusha Ltd, 1977.

    Google Scholar 

  58. J.N. Zalameda. Measured through-the-thickness thermal diffusivity of carbon fiber reinforced composite materials. Journal of Composites Technology & Research, 1995; 21:98–102.

    Google Scholar 

  59. K.K. Chawla. Composite Materials, New York, Springer, 1987.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

(2006). Modelling the Thermal Response of Composites in Fire. In: Fire Properties of Polymer Composite Materials. Solid Mechanics and Its Applications, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5356-6_5

Download citation

Publish with us

Policies and ethics