Skip to main content

Configuring a Bistable Atomic Switch by Repeated Electrochemical Cycling

  • Conference paper
  • 1343 Accesses

Part of the book series: NATO Science Series ((NAII,volume 233))

Abstract

Recently, we have reported the stable and reproducible operation of atomic-scale switches, which allow us to open and close an electrical circuit by the controlled reconfiguration of silver atoms within an atomic-scale junction. Here, we investigate the operation of such atomic quantum switches, and we study in more detail the process during which these switches are formed by repeated electrochemical deposition and dissolution. We find that only after repeated deposition/dissolution cycles, a bistable contact is formed on the atomic scale, which allows to switch between a configuration where the contact is closed, the conducting state or “on”-state, and a configuration where the contact is open, the non-conducting state or “off”-state. We demonstrate that before a bistable contact is formed, irregular changes of the contact conductance are observed as a function of the electrochemical cycling process. A sudden transition to regular switching of the contact between a well-defined “on”-state and the non-conducting “off”-state is observed, which indicates the formation of a bistable contact configuration. Conductance quantization at integer multiples of the conductance quantum G0 = 2e2/h (≈1/12.9 kΩ) is found at room temperature for the “on”- state conductance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agraít N, Levy Yeyati A, van Ruitenbeek JM (2003). Phys Rep 377:81

    Article  ADS  CAS  Google Scholar 

  2. Agraít N, Rodrigo JG, Vieira S (1993). Phys Rev B 47:12345

    Article  ADS  Google Scholar 

  3. Pascual JI et al (1993). Phys Rev Lett 71:1852

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Krans JM, van Ruitenbeek JM, Fisun VV, Yanson IK, de Jongh LJ (1995). Nature 375:767

    Article  ADS  CAS  Google Scholar 

  5. Scheer E et al (1998). Nature 394:154

    Article  ADS  CAS  Google Scholar 

  6. Li CZ, Tao NJ (1998). Appl Phys Lett 72:894

    Article  ADS  CAS  Google Scholar 

  7. Li CZ, Bogozi A, Huang W, Tao NJ (1999). Nanotechnology 10:221

    Article  ADS  Google Scholar 

  8. Morpurgo AF, Marcus CM, Robinson DB (1999). Appl Phys Lett 74:2084

    Article  ADS  CAS  Google Scholar 

  9. Li CZ, He HX, Tao NJ (2000). Appl Phys Lett 77:3995

    Article  ADS  CAS  Google Scholar 

  10. Li J, Kanzaki T, Murakoshi K, Nakato Y (2002). Appl Phys Lett 81:123

    Article  ADS  CAS  Google Scholar 

  11. Elhoussine F, Mátéfi-Tempfli S, Encinas A, Piraux L (2002). Appl Phys Lett 81:1681

    Article  ADS  CAS  Google Scholar 

  12. Obermair Ch, Kniese R, Xie F-Q, Schimmel Th (2004). In: Alexandrov AS, Demsar J, I. Yanson K (eds) Molecular Nanowires and Other Quantum Objects. Kluwer Academic Publishers, The Netherlands, pp 233–242

    Google Scholar 

  13. Eigler DM, Lutz CP, Rudge WE (1991). Nature 352:600

    Article  ADS  CAS  Google Scholar 

  14. Fuchs H, Schimmel Th (1991) Adv Mater 3:112

    Article  CAS  Google Scholar 

  15. Terabe K, Hasegawa T, Nakayama T, Aono M (2005). Nature 433:47

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Xie F-Q, Nittler L, Obermair Ch, Schimmel Th (2004). Phys Rev Lett 93:128303

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Xie F-Q, Obermair Ch, Schimmel Th (2004). Solid State Communications 132:437

    Article  CAS  Google Scholar 

  18. Brandbyge M, Jacobsen KW, Norskov JK (1997). Phys Rev B 55:2637

    Article  ADS  CAS  Google Scholar 

  19. Cuevas JC, Levy Yeyati A, Martín-Rodero A (1998). Phys Rev Lett 80:1066

    Article  ADS  CAS  Google Scholar 

  20. Bach CE, Giesen M, Ibach H, Einstein TL (1997). Phys Rev Lett 78:4225

    Article  ADS  CAS  Google Scholar 

  21. Friesen C, Dimitrov N, Cammarata RC, Sieradzki K (2001). Langmuir 17:807

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Xiexs, FQ., Obermair, C., Schimmel, T. (2006). Configuring a Bistable Atomic Switch by Repeated Electrochemical Cycling. In: Gross, R., Sidorenko, A., Tagirov, L. (eds) Nanoscale Devices - Fundamentals and Applications. NATO Science Series, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5107-4_9

Download citation

Publish with us

Policies and ethics