Skip to main content

Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 41))

Abstract

We studied the effects of elevated CO2 (180–200 ppmv above ambient) on growth and chemistry of three moss species (Sphagnum palustre, S. recurvum and Polytrichum commune) in a lowland peatland in the Netherlands. Thereto, we conducted both a greenhouse experiment with both Sphagnum species and a field experiment with all three species using MiniFACE (Free Air CO2 Enrichment) technology during 3 years. The greenhouse experiment showed that Sphagnum growth was stimulated by elevated CO2 in the short term, but that in the longer term (≥1 year) growth was probably inhibited by low water tables and/or down-regulation of photosynthesis. In the field experiment, we did not find significant changes in moss abundance in response to elevated CO2, although CO2 enrichment appeared to reduce S. recurvum abundance. Both Sphagnum species showed stronger responses to spatial variation in hydrology than to increased atmospheric CO2 concentrations. Polytrichum was insensitive to changes in hydrology. Apart from the confounding effects of hydrology, the relative lack of growth response of the moss species may also have been due to the relatively small increase in assimilated CO2 as achieved by the experimentally added CO2. We calculated that the added CO2 contributed at most 32% to the carbon assimilation of the mosses, while our estimates based on stable C isotope data even suggest lower contributions for Sphagnum (24–27%). Chemical analyses of the mosses showed only small elevated CO2 effects on living tissue N concentration and C/N ratio of the mosses, but the C/N ratio of Polytrichum was substantially lower than those of the Sphagnum species. Continuing expansion of Polytrichum at the expense of Sphagnum could reduce the C sink function of this lowland Sphagnum peatland, and similar ones elsewhere, as litter decomposition rates would probably be enhanced. Such a reduction in sink function would be driven mostly by increased atmospheric N deposition, water table regulation for agricultural purposes and land management to preserve the early successional stage (mowing, tree and shrub removal), since these anthropogenic factors will probably exert a greater control on competition between Polytrichum and Sphagnum than increased atmospheric CO2 concentrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R., Wallén B. and Malmer N. 1992. Growth-limiting nutrients in Shagnum-dominated bogs subject to low and high atmopsheric nitrogen supply. J. Ecol. 80: 131–140.

    Article  Google Scholar 

  • Beltman B. and Van den Broek T. 1993. Verzuring van kalkrijke venen — een studie naar effectgerichte maatregelen. Landschap 10: 17–32 (in Dutch).

    Google Scholar 

  • Berendse F., Van Breeemen N., Rydin H., Buttler A., Heijmans M., Hoosbeek M.R., Lee J.A., Mitchell E., Saarinen T., Vasander H. and Wallén B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol. 7: 591–598.

    Article  Google Scholar 

  • Bolin B. 1986. How much CO2 will remain in the atmosphere?. In: Bolin B.R., Döös B., Jäger J. and Warrick R.A. (eds.), The Greenhouse Effect, Climate Change, and Ecosystems, John Wiley & Sons, Chichester, pp. 93–155.

    Google Scholar 

  • Bowden R.D. 1991. Inputs, outputs, and accumulation of nitrogen in an early successional moss (Polytrichum) ecosystem. Ecol. Monogr. 61: 207–223.

    Article  Google Scholar 

  • Bragazza L., Thavanainen T., Kutnar L., Rydin H., Limpens J., Hájek M., Grosvernier P., Hájek T., Hajkova P., Hansen I., Iacumin P. and Gerdol R. 2004. Nutritional constraints in ombotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol. 163: 609–616.

    Article  Google Scholar 

  • Brock T.C.M. and Bregman R. 1989. Periodicity in growth, productivity, nutrient content and decomposition of Sphagnum recurvum var. mucronatum in a fen woodland. Oecologia 80: 44–52.

    Article  Google Scholar 

  • Clymo R.S. 1970. The growth of Sphagnum: methods of measurement. J. Ecol. 58: 13–49.

    Article  Google Scholar 

  • Clymo R.S. 1984. The limits to peat bog growth. Philos. Trans. Roy. Soc. Lond. B303: 605–654.

    Google Scholar 

  • Clymo R.S. and Hayward P.M. 1982. The ecology of Sphagnum. In: Smith A.J.E. (ed.), Bryophyte Ecology., Chapman and Hall, New York, pp. 229–289.

    Google Scholar 

  • Coulson J.C. and Butterfield J. 1978. An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J. Ecol. 66: 631–650.

    Article  Google Scholar 

  • Farquhar G., Ehleringer J.R. and Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537.

    Article  CAS  Google Scholar 

  • Field C.B., Jackson R.B. and Mooney H.A. 1995. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18: 1214–1225.

    Article  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1: 182–195.

    Google Scholar 

  • Heij G.J. and Schneider T. (eds), 1991. Acidification Research in the Netherlands, Studies in Environmental Science 46. Elsevier, Amsterdam.

    Google Scholar 

  • Heijmans M.M.P.D., Arp W.J. and Berendse F. 2001. Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation. Global Change Biol. 7: 817–827.

    Article  Google Scholar 

  • Heijmans M.M.P.D., Klees H. and Berendse F. 2002. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos 97: 415–425.

    Article  CAS  Google Scholar 

  • Hoosbeek M.R., Van Breemen N., Vasander H., Buttler A. and Berendse F. 2002. Potassium limits potential growth of bog vegetation under elevated CO2 and N deposition. Global Change Biol. 8: 1130–1138.

    Article  Google Scholar 

  • Hornibrook E.R.C., Longstaffe F.J. and Fyfe W.S. 2000. Factors influencing stable isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: implications for δ-signatures of emissions. Isotopes Environ. Health Stud. 36: 151–176.

    PubMed  CAS  Google Scholar 

  • Houghton J.T., Ding Y., Griggs D.J., Noguer M., Van der Linden P.J., Dai X., Maskell K. and Johnson C.A. 2001. In: Climate Change 2001: The Scientific Basis — Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jalink M.H. 1996. Indicatorsoorten voor Verdroging, Verzuring en Eutrofiëring in Laagveenmoerassen. Staatsbosbeheer Driebergen, Driebergen (in Dutch).

    Google Scholar 

  • Jauhiainen J. and Silvola J. 1999. Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations. Ann. Bot. Fenn. 36: 11–19.

    Google Scholar 

  • Jauhiainen J., Vasander H. and Silvola J. 1994. Response of Sphagnum fuscum to N deposition and increased CO2. J. Bryol. 18: 83–95.

    Google Scholar 

  • Jauhiainen J., Vasander H. and Silvola J. 1998. Nutrient concentration in Sphagna at increased N-deposition rates and raised atmospheric CO2-concentrations. Plant Ecol. 138: 149–160.

    Article  Google Scholar 

  • Jauhiainen J., Silvola J., Tolonen K. and Vasander H. 1997. Response of Sphagnum fuscum to water levels and CO2 concentration. J. Bryol. 19: 391–400.

    Google Scholar 

  • Jonasson S. 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52: 101–106.

    Article  Google Scholar 

  • Koerselman W. and Verhoeven J.T.A. 1992. Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. In: Verhoeven J.T.A. (ed.), Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation, Kluwer, Dordrecht, pp. 397–432.

    Google Scholar 

  • Körner C. 2000. Biosphere responses to CO2 enrichment. Ecol. Appl. 10: 1590–1619.

    Google Scholar 

  • Lamers L.P.M., Farhoush C., Van Groenendael J.M. and Roelofs J.G.M. 1999. Calcareous groundwater raises bogs; the concept of ombotrophy revisited. J. Ecol. 87: 639–648.

    Article  Google Scholar 

  • Lansdown J.M., Quay P.D. and King S.L. 1992. CH4 production via CO2 reduction in a temperate bog: Asource of 13C-depleted CH4. Geochim. Cosmochim. Acta 56: 3493–3503.

    Article  CAS  Google Scholar 

  • Limpens J. and Berendse F. 2003. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135: 339–345.

    PubMed  CAS  Google Scholar 

  • Limpens J., Raymakers T.A.G., Baar J., Berendse F. and Zijlstra J.D. 2003. The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103: 59–68.

    Article  Google Scholar 

  • Makino A. and Mae T. 1999. Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol. 40: 999–1006.

    CAS  Google Scholar 

  • Maltby E. and Immirzi P. 1993. Carbon dynamics in peatlands and other wetland soils: regional and global prespectives. Chemosphere 27: 999–1023.

    Article  CAS  Google Scholar 

  • Miglietta F., Hoosbeek M.R., Foot J., Gigon F., Hassinen A., Heijmans M., Peresotti A., Saarinen T., Van Breemen N. and Wallén B. 2001. Spatial and temporal performance of the MiniFACE (free air CO2 enrichment) system on bog ecosystems in northern and central Europe. Environ. Monitor. Assess. 66: 107–127.

    Article  CAS  Google Scholar 

  • Milla R., Cornelissen J.H.C., Van Logtestijn R.S.P., Toet S. and Aerts R. 2006. Vascular plant responses to elevated CO2 in a temperate lowland Sphagnum peatland. Plant Ecol. DOI: 10.1007/s11258-005-9028-9.

    Google Scholar 

  • Mitchell E.A.D., Buttler A., Grosvernier P., Rydin H., Siegenthaler A. and Gobat J.-M. 2002. Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J. Ecol. 90: 529–533.

    Article  CAS  Google Scholar 

  • Mooney H.A., Canadell J., Chapin F.S. III, Ehleringer J.R., Körner Ch., McMurtrie R.E., Parton W.J., Pitelka L.F. and Schulze E.-D. 1999. Ecosystem physiology responses to global change. In: Walker B., Steffen W., Canadell J. and Ingram J. (eds.), The Terrestrial Biosphere and Global Change — Implications for Natural and Managed Ecosystems, Cambridge University Press, Cambridge, pp. 141–189.

    Google Scholar 

  • Norby R.J., Cotrufo M.F., Ineson P., O’Neill E.G. and Canadell J.G. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153–165.

    Article  Google Scholar 

  • Pataki D.E., Ellsworth D.S., Evans R.D., Gonzalez-Meler M., King J., Leavitt S.W., Lin G., Matamala R., Pendall E., Siegwolf R., Van Kessel C. and Ehleringer J.R. 2003. Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience 53: 805–818.

    Article  Google Scholar 

  • Pepin S. and Körner C. 2002. Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133: 1–9.

    Article  Google Scholar 

  • Poorter H. and Navas M.-L. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol. 157: 175–198.

    Article  Google Scholar 

  • Rydin H. 1993. Mechanisms of interactions among Sphagnum species along water-level gradients. Adv. Bryol. 5: 153–185.

    Google Scholar 

  • Saarnio S., Järviö S., Saarinen T., Vasander H. and Silvola J. 2003. Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6: 46–60.

    Article  CAS  Google Scholar 

  • Silvola J. 1985. CO2 dependence of photosynthesis in certain forest and peat mosses simulated photosynthesis at various actual and hypothetical CO2 concentrations. Lindbergia 11: 86–93.

    Google Scholar 

  • Smolders A.J.P., Tomassen H.B.M., Pijnappel H.W., Lamers L.P.M. and Roelofs J.G.M. 2001. Substrate-derived CO2 is important in the development of Sphagnum spp. New Phytol. 152: 325–332.

    Article  Google Scholar 

  • Stitt M. and Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 22: 583–621.

    Article  CAS  Google Scholar 

  • Tuba Z., Proctor M.C.F. and Takács Z. 1999. Dessiccation-tolerant plants under elevated air CO2: a review. Zeitschrift für Naturforschung C 54: 788–796.

    CAS  Google Scholar 

  • Van Breemen N. 1995. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10: 270–275.

    Article  Google Scholar 

  • Van der Heijden E., Verbeek S.K. and Kuiper P.J.C. 2000a. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biol. 6: 200–212.

    Google Scholar 

  • Van der Heijden E., Jauhiainen J., Silvola J., Vasander H. and Kuiper P.J.C. 2000b. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum. J. Bryol. 22: 175–182.

    Google Scholar 

  • Van der Meijden R. 1996. Heukels’ Flora van Nederland 22th ed. Wolters Noordhoff, Groningen (in Dutch).

    Google Scholar 

  • Verhoeven J.T.A. and Toth E. 1995. Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem. 27: 271–275.

    Article  CAS  Google Scholar 

  • Verhoeven J.T.A. and Liefveld W.M. 1997. The ecological significance of organochemical compounds in Sphagnum. Acta Bot. Neerland. 46: 117–130.

    CAS  Google Scholar 

  • Walbridge M.R. 1994. Plant community composition and surface water chemistry of fen peatlands in West Virginia’s Appalachian plateau. Water Air Soil Pollut. 77: 247–269.

    Article  CAS  Google Scholar 

  • Weltzin J.F., Harth C., Bridgham S.D., Pastor J. and Vonderharr M. 2001. Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128: 557–565.

    Article  Google Scholar 

  • Weltzin J.F., Pastor J., Harth C., Bridgham S.D., Updegraff K. and Chapin C.T. 2000. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81: 3464–3478.

    Article  Google Scholar 

  • White J.W.C., Ciais P., Figge R.A., Kenny R. and Markgraf V. 1994. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367: 153–156.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Toet, S., Cornelissen, J.H.C., Aerts, R., van Logtestijn, R.S.P., de Beus, M., Stoevelaar, R. (2006). Moss responses to elevated CO2 and variation in hydrology in a temperate lowland peatland. In: Rozema, J., Aerts, R., Cornelissen, H. (eds) Plants and Climate Change. Tasks for vegetation science, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4443-4_3

Download citation

Publish with us

Policies and ethics