Skip to main content

Statistical Analysis of Landscape Data: Space-for-time, Probability Surfaces and Discovering Species

  • Chapter
A Changing World

Part of the book series: Landscape Series ((LAEC,volume 8))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett M.S. 1960. Stochastic population models. Methuen and Co., London.

    Google Scholar 

  • Beran J. 1994. Statistics for Long-Memory Processes. Chapman and Hall, New York.

    Google Scholar 

  • Beran J. and Ghosh S. 1998. Root-n-consistent estimation in partial linear models with long-memory errors. Scandinavian Journal of Statistics 25: 345-357.

    Article  Google Scholar 

  • Beran J. and Ocker D. 1999. SEMIFAR forecasts, with applications to foreign exchange rates. Journal of Statistical Planning and Inference 80: 137-153.

    Article  Google Scholar 

  • Berger J.O. 1999. Statistical decision theory and Bayesian statistics. Springer Verlag, New York.

    Google Scholar 

  • Bramson M., Cox J.T. and Durrett R. 1996. Spatial models for species area curves. Annals of Probability 24: 1727-1751.

    Article  Google Scholar 

  • Cliff A.D. and Ord J.K. 1981. Spatial processes: Models and applications. Pion Corp., London.

    Google Scholar 

  • Cox D.R. and Hinkley D.V. 2000. Theoretical statistics. Chapman and Hall, New York.

    Google Scholar 

  • Cox D.R. and Isham V. 1988. Point processes, Chapman and Hall, New York.

    Google Scholar 

  • Cressie N.A.C. 1993. Statistics for spatial data. Wiley, New York.

    Google Scholar 

  • Diggle P.J. 2003. Statistical analysis of spatial point patterns. Arnold, London.

    Google Scholar 

  • Diggle P.J., Liang K.Y. and Zeger S.L. 1994. Analysis of longitudinal data. Oxford University Press, Oxford.

    Google Scholar 

  • Dietrich M. 1997. Häufigkeit, Diversität,Verbreitung und Dynamik von epiphytischen Flechten in Schweizerischen Mittelland und den Voralpen. Inauguraldissertation der Philosophisch-natur-wissenschaftlichen Fakultät der Universität Bern.

    Google Scholar 

  • Draghicescu D. 2002. Nonparametric quantile estimation for dependent data. Ph.D. thesis no. 2592, EPFL.

    Google Scholar 

  • Eubank R. 1988. Spline smoothing and nonparametric regression. Marcel Dekker, New York.

    Google Scholar 

  • Fan J. and Gijbels I. 1996. Local polynomial modeling and its applications. Chapman and Hall, London.

    Google Scholar 

  • Foster B.L. and Tilman D. 2000. Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecology 146: 1-10.

    Article  Google Scholar 

  • Ghosh S. 2001. Nonparametric trend estimation in replicated time series. Journal of Statistical Planning and Inference 97: 263-274.

    Article  Google Scholar 

  • Ghosh S. 2005. Random fields based explanation for power-laws in species-area curves. (Preprint).

    Google Scholar 

  • Ghosh S., Dietrich M. and Scheidegger C. 1997a. Bootstrap based species-area curve estimation for epiphytic lichens in Switzerland. (Preprint; appears in the PhD thesis of the second author, University of Bern).

    Google Scholar 

  • Ghosh S. and Draghicescu D. 2002. Predicting the distribution function for long-memory processes. International Journal of Forecasting 18: 283-290.

    Article  Google Scholar 

  • Ghosh S., Landmann G., Pierrat J.C. and Müller-Edzards C. 1997b. Spatio-temporal variation in defoliation. In: Müller-Edzards C., De Vries W. and Erisman J.W. (eds.). 10 years forest condi-tion monitoring in Europe. Studies on temporal development, spatial distribution, and impacts of natural and anthropogenic stress factors. pp. 35-50. Geneva and Brussels, United Nations Economic Commission for Europe /European Commission.

    Google Scholar 

  • Ghosh S., Beran J., Heiler S., Percival D. and Tinner W. 2007. Memory, non-stationarity and trend: analysis of environmental time series. In: Kienast F., Wildi O. and Ghosh S. (eds.). A Changing World. Challenges for Landscape Research, Vol. 8: 223-247. Springer Landscape Series, Dordrecht.

    Google Scholar 

  • Hampel F.R. 1987. Data analysis and self-similar processes. Proceedings of the 42nd session of the ISI, Tokyo, Book 4, 235-254.

    Google Scholar 

  • Künsch H. 1986. Statistical aspects of self-similar processes. Invited paper, Proceedings of the first world congress of the Bernoulli society, Tashkent, vol. 1, Prohorov Yu. and Sazonov V.V. (eds). VNU Science press, Utrecht, 67-74.

    Google Scholar 

  • Mandelbrot B.B. and Wallis J.R. 1968. Noah, Joseph and operational hydrology. Water Resources Res. 4: 909-918.

    Article  Google Scholar 

  • Mardia K.V. 1972. Statistics of directional data. Academic Press, London.

    Google Scholar 

  • Matheron G. 1962. Traité de Géostatistique Appliquée. Cambridge Philosophical Society, Tome 1, Technip, Paris.

    Google Scholar 

  • Matheron G. 1973. The intrinsic random functions and their applications. Advances in Applied Probability 5: 439-468.

    Article  Google Scholar 

  • Mingoti S.A. and Meeden G. 1992. Estimating the total number of distinct species using presence and absence data. Biometrics 48: 863-875.

    Article  Google Scholar 

  • Nychka D. 2000. Challenges in understanding the atmosphere. Journal of the American Statistical Association 95: 972-975.

    Article  Google Scholar 

  • Pickett T.A. 1989. Space-for-time substitution as an alternative to long-term studies. In: Likens E. (ed.). Long-Term Studies in Ecology: approaches and alternatives. Springer, New York. pp. 110-135.

    Google Scholar 

  • Ripley B.D. 1988. Statistical inference for spatial processes. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Silverman B.W. 1986. Density estimation. Chapman a and Hall, London.

    Google Scholar 

  • Smith E.P. and van Belle G. 1984. Nonparametric estimation of species richness. Biometrics 40: 119-129.

    Article  Google Scholar 

  • Vicsek T. 1992. Fractal growth phenomena. World Scientific cop., Singapore.

    Google Scholar 

  • Wikle C.K., Milliff R.F., Nychka D. and Berliner L.M. 2001. Spatiotemporal hierarchical Bayesian modeling: tropical ocean surface winds. Journal of the American Statistical Association 96: 382-397.

    Article  Google Scholar 

  • Wildi O. 2002. Modelling succession from pasture to forest in time and space. Community Ecology 3: 181-189.

    Article  Google Scholar 

  • Wildi O. and Schütz M. 2000. Reconstruction of a long-term recovery process from pasture to forest. Community Ecology 1: 25-32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ghosh, S., Wildi, O. (2007). Statistical Analysis of Landscape Data: Space-for-time, Probability Surfaces and Discovering Species. In: Kienast, F., Wildi, O., Ghosh, S. (eds) A Changing World. Landscape Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4436-6_14

Download citation

Publish with us

Policies and ethics