Skip to main content

Data Mining in Materials Development

  • Chapter
Handbook of Materials Modeling

Abstract

Data Mining (DM) has become a powerful tool in a wide range of areas, from e-commerce, to finance, to bioinformatics, and increasingly, in materials science [1, 2]. Miners think about problems with a somewhat different focus than traditional scientists, and DM techniques offer the possibility of making quantitative predictions in many areas where traditional approaches have had limited success. Scientists generally try to make predictions through constitutive relations, derived mathematically from basic laws of physics, such as the diffusion equation or the ideal gas law. However, in many areas, including materials development, the problems are so complex that constitutive relations either cannot be derived, or are too approximate or intractable for practical quantitative use. The philosophy of a DM approach is to assume that useful constitutive relations exist, and to attempt to derive them primarily from data, rather than from basic laws of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Klosgen and J.M. Zytkow, Handbook of Data Mining and Knowledge Discovery, Oxford University Press, Oxford, 2002.

    Google Scholar 

  2. N. Ye, The Handbook of Data Mining, Lawrence Erlbaum Associates, London, 2003.

    Google Scholar 

  3. D. vonMendelejeff, “Ueber die Beziehunger der Eigenschaften Zu den Atomgewichte der Elemente,” Zeit. Chem., 12, 405–406, 1869.

    Google Scholar 

  4. M.F. Ashby, Materials Selection in Mechanical Design., Butterworth-Heinemann, Boston, 1999.

    Google Scholar 

  5. D. Braha, Data Mining for Design and Manufacturing, Kluwer Academic Publishers, Boston, 2001.

    MATH  Google Scholar 

  6. M.H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson Education, Inc., Upper Saddle River, New Jersey, 2003.

    Google Scholar 

  7. M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, Wiley — Interscience, IEEE Press, Hoboken, New Jersey, 2003.

    MATH  Google Scholar 

  8. PolyphonicHMI, (http://www.polyphonichmi.com/technology.html).

  9. M.H. Kutner, C.J. Nachtschiem, W. Wasserman, and J. Neter, Applied Linear Statistical Models, McGraw-Hill, New York, 1996.

    Google Scholar 

  10. A.C. Rencher, Methods of Multivariate Analysis, Wiley-Interscience, New York, 2002.

    Book  MATH  Google Scholar 

  11. J.E. Jackson, A User’s Guide to Principal Components, John Wiley & Sons, New York, 1991.

    Book  MATH  Google Scholar 

  12. S.d. Jong, “Simpls: an alternative approach to partial least squares regression,” in Chemometrics and Intelligent Laboratory Systems, 18, 251–263, 1993.

    Article  Google Scholar 

  13. B.M. Wise and N.B. Gallagher, PLS_Toolbox 2.1 for Matlab, Eigenvector Reseach, Inc., Manson, WA, 2000.

    Google Scholar 

  14. S. Wold, A.H.W. Ruhe, and W.J. Dunn, “The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses,” SIAM J. Sci. Stat. Comput., 5, 735–743, 1984.

    Article  MATH  Google Scholar 

  15. M.T. Hagan, H.B. Demuth, and M.H. Beale, Neural Network Design, Martin Hagan, 2002.

    Google Scholar 

  16. D.J.C. Mackay, “Bayesian interpolation,” Neural Comput., 4, 415–447, 1992.

    Article  Google Scholar 

  17. D.J.C. Mackay, “A practical bayesian framework for backpropagation networks,” Neural Comput, 4, 448–472, 1992.

    Article  Google Scholar 

  18. D.J.C. Mackay, “Probable networks and plausible predictions — a review of practical bayesian methods for supervised neural networks,” Network-Comput. Neural Syst., 6, 469–505, 1995.

    Article  MATH  Google Scholar 

  19. D.J.C. MacKay, “Bayesian modeling with neural networks,” In: H. Cerjack (ed.), Mathematical Modeling of Weld Phenomena, vol. 3. The Institute of Materials, London, pp. 359–389, 1997.

    Google Scholar 

  20. A.J. Chalk, B. Beck, and T. Clark, “A quantum mechanical/neural net model for boiling points with error estimation,” J. Chem. Inf. Comput. Sci., 41, 457–462, 2001.

    Google Scholar 

  21. H. Bhadeshia, “Neural networks in materials science,” ISIJ Int., 39, 966–979, 1999.

    Article  Google Scholar 

  22. J.M. Serra, A. Corma, A. Chica, E. Argente, and V. Botti, “Can artificial neural networks help the experimentation in catalysis?,” Catal. Today, 81, 393–403, 2003.

    Article  Google Scholar 

  23. K. Baumann, “Cross-validation as the objective function for variable-selection techniques,” Trac-Trend Anal. Chem., 22, 395–406 2003.

    Article  Google Scholar 

  24. A.S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge, MA, 1991.

    Google Scholar 

  25. E.K.P. Chong and S.H. Zak, An Introduction to Optimization, John Wiley & Sons, New York, 2001.

    MATH  Google Scholar 

  26. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  27. J. Taskinen and J. Yliruusi, “Prediction of physicochemical properties based on neural network modelling,” Adv. Drug Deliv. Rev., 55, 1163–1183, 2003.

    Article  Google Scholar 

  28. H. Bhadeshia, “Design of ferritic creep-resistant steels,” ISIJ Int., 41, 626–640, 2001.

    Article  Google Scholar 

  29. T. Sourmail, H. Bhadeshia, and D.J.C. MacKay, “Neural network model of creep strength of austenitic stainless steels,” Mater. Sci. Technol., 18, 655–663, 2002.

    Article  Google Scholar 

  30. S.H. Lalam, H. Bhadeshia, and D.J.C. MacKay, “Estimation of mechanical properties of ferritic steel welds part 1: yield and tensile strength,” Sci. Technol. Weld. Joining 5, 135–147, 2000.

    Article  Google Scholar 

  31. S.H. Lalam, H. Bhadeshia, and D.J.C. MacKay, “Estimation of mechanical properties of ferritic steel welds part 2: Elongation and charpy toughness,” Sci. Technol. of Weld. Joining, 5, 149–160, 2000.

    Article  Google Scholar 

  32. M.A. Yescas, H. Bhadeshia, and D.L. MacKay, “Estimation of the amount of retained austenite in austempered ductile irons using neural networks,” Mater. Sci. Eng. A, 311, 162–173, 2001.

    Article  Google Scholar 

  33. S. Cardie and H.K.D.H. Bhadeshia, “Materials algorithms project (map): Public domain research software & data,” In: Mathematical Modelling of Weld Phenomena IV, Institute of Materials, London, 1998.

    Google Scholar 

  34. S. Malinov and W. Sha, “Software products for modelling and simulation in materials science,” Comput. Mater. Sci., 28, 179–198, 2003.

    Article  Google Scholar 

  35. S. Malinov, W. Sha, and Z. Guo, “Application of artificial neural network for prediction of time-temperature-transformation diagrams in titanium alloys,” Mater. Sci. Eng. Struct. Matter Properties Microstruct. Process, 283, 1–10, 2000.

    Google Scholar 

  36. S. Malinov, W. Sha, and J.J. McKeown, “Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network,” Comput. Mater. Sci., 21, 375–394, 2001.

    Article  Google Scholar 

  37. S. Malinov and W. Sha, “Application of artificial neural networks for modelling correlations in titanium alloys,” Mater. Sci. Eng., A365, 202–211, 2004.

    Google Scholar 

  38. T. Malinova, S. Malinov, and N. Pantev, “Simulation of microhardness profiles for nitrocarburized surface layers by artificial neural network,” Surf. Coat. Technol., 135, 258–267, 2001.

    Article  Google Scholar 

  39. T. Malinova, N. Pantev, and S. Malinov, “Prediction of surface hardness after ferritic nitrocarburising of steels using artificial neural networks,” Mater. Sci. Technol., 17, 168–174, 2001.

    Article  Google Scholar 

  40. S. Christensen, J.S. Kandola, O. Femminella, S.R. Gunn, P.A.S. Reed, and I. Sinclair, “Adaptive numerical modelling of commercial aluminium plate performance,” Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1–3, 331-3, 533–538, 2000.

    Google Scholar 

  41. O.P. Femminella, M.J. Starink, M. Brown, I. Sinclair, C.J. Harris, and P.A.S. Reed, “Data pre-processing/model initialisation in neurofuzzy modelling of structure-property relationships in Al-Zn-Mg-Cu alloys,” ISIJ Int., 39, 1027–1037, 1999.

    Article  Google Scholar 

  42. O.P. Femminella, M.J. Starink, S.R. Gunn, C.J. Harris, and P.A.S. Reed, “Neurofuzzy and supanova modelling of structure-property relationships in Al-Zn-Mg-Cu alloys,” Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1-3, 331–333, 1255–1260, 2000.

    Google Scholar 

  43. J.S. Kandola, S.R. Gunn, I. Sinclair, and P.A.S. Reed, “Data driven knowledge extraction of materials properties,” In: Proceedings of Intelligent Processing and Manufacturing of Materials, Hawaii, USA, 1999.

    Google Scholar 

  44. M.J. Starink, I. Sinclair, P.A.S. Reed, and P.J. Gregson, “Predicting the structural performance of heat-treatable al-alloys,” In: Aluminum Alloys — Their Physical and Mechanical Properties, Parts 1–3, vol. 331-337, pp. 97–110, Trans Tech Publications, Switzerland, 2000.

    Google Scholar 

  45. H. Byun and S.W. Lee, “Applications of support vector machines for pattern recognition: A survey,” Pattern Recogn. Support Vector Machines, Proc., 2388, 213–236, 2002.

    Article  Google Scholar 

  46. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  47. V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  48. L. Harmon, “Experiment planning for combinatorial materials discovery,” J. Mater. Sci., 38, 4479–4485, 2003.

    Article  Google Scholar 

  49. G.J. Hutchings and M.S. Scurrell, “Designing oxidation catalysts — are we getting better?,” Cattech, 7, 90–103, 2003.

    Article  Google Scholar 

  50. C. Klanner, D. Farrusseng, L. Baumes, C. Mirodatos, and F. Schuth, “How to design diverse libraries of solid catalysts?,” QSAR & Combinatorial Science, 22, 729–736, 2003.

    Article  Google Scholar 

  51. T.R. Cundari, J. Deng, and Y. Zhao, “Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms,” Indust. & Eng. Chem. Res., 40, 5475–5480, 2001.

    Article  Google Scholar 

  52. T. Hattori and S. Kito, “Neural-network as a tool for catalyst development,” Catal. Today, 23, 347–355, 1995.

    Article  Google Scholar 

  53. M. Holena and M. Baerns, “Feedforward neural networks in catalysis — a tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction,” Catal. Today, 81, 485–494, 2003.

    Article  Google Scholar 

  54. K. Huang, X.L. Zhan, RQ. Chen, and D.W. Lu, “Catalyst design for methane oxidative coupling by using artificial neural network and hybrid genetic algorithm,” Chem. Eng. Sci., 58, 81–87, 2003.

    Article  Google Scholar 

  55. A. Tompos, J.L. Margitfalvi, E. Tfirst, and L. Vegvari, Information mining using artificial neural networks and “holographic research strategy,” Appl. Catal. A, 254, 161–168, 2003.

    Article  Google Scholar 

  56. T. Umegaki, Y. Watanabe, N. Nukui, E. Omata, and M. YamActa, “Optimization of catalyst for methanol synthesis by a combinatorial approach using a parallel activity test and genetic algorithm assisted by a neural network,” In: Energy Fuels, 17, 850–856, 2003.

    Article  Google Scholar 

  57. O.V. Buyevskaya, A. Bruckner, E.V. Kondratenko, D. Wolf, and M. Baerns, “Fundamental and combinatorial approaches in the search for and optimisation of catalytic materials for the oxidative dehydrogenation of propane to propene,” Catal. Today, 67, 369–378, 2001.

    Article  Google Scholar 

  58. U. Rodemerck, D. Wolf, O.V. Buyevskaya, P. Claus, S. Senkan, and M. Baerns, “High-throughput synthesis and screening of catalytic materials — case study on the search for a low-temperature catalyst for the oxidation of low-concentration propane,” Chem. Eng. J., 82, 3–11, 2001.

    Article  Google Scholar 

  59. D. Wolf, O.V. Buyevskaya, and M. Baerns, “An evolutionary approach in the combinatorial selection and optimization of catalytic materials,” Appl. Catal. A, 200, 63–77, 2000.

    Article  Google Scholar 

  60. J.M. Caruthers, J.A. Lauterbach, K.T. Thomson, V. Venkatasubramanian, C.M. Snively, A. Bhan, S. Katare, and G. Oskarsdottir, “Catalyst design: knowledge extraction from high-throughput experimentation,” J. Catal., 216, 98–109, 2003.

    Article  Google Scholar 

  61. A. Tuchbreiter and R. Mulhaupt, “The polyolefin challenges: catalyst and process design, tailor-made materials, high-throughput development and data mining,” Macromol. Symp., 173, 1–20, 2001.

    Article  Google Scholar 

  62. A. Tuchbreiter, J. Marquardt, B. Kappler, J. Honerkamp, M.O. Kristen, and R. Mulhaupt, “High-output polymer screening: exploiting combinatorial chemistry and data mining tools in catalyst and polymer development,” Macromol. Rapid Comm., 24, 47–62, 2003.

    Article  Google Scholar 

  63. A. Hagemeyer, B. Jandeleit, Y.M. Liu, D.M. Poojary, H.W. Turner, A.F. Volpe, and W.H. Weinberg, “Applications of combinatorial methods in catalysis,” Appl. Catal. A, 221, 23–43, 2001.

    Article  Google Scholar 

  64. G. Bergerhoff, R. Hundt, R. Sievers, and I.D. Brown, “The inorganic crystal-structure data-base,” J. Chem. Compu. Sci., 23, 66–69, 1983.

    Google Scholar 

  65. P. Villars, K. Cenzual, J.L.C. Daams, F. Hullinger, T.B. Massalski, H. Okamoto, K. Osaki, and A. Prince, Pauling File, ASM International, Materials Park, Ohio, USA, 2002.

    Google Scholar 

  66. P.S. White, J. Rodgers, and Y Le Page, “Crystmet: a database of structures and powder patterns of metals and intermetallics,” Acta Cryst. B, 58, 343–348, 2002.

    Article  Google Scholar 

  67. S. Kabekkodu, G. Grosse, and J. Faber, “Data mining in the icdd’s metals & alloys relational database,” Epdic 7: European Powder Diffraction, Pts 1 and 2, 378-3, 100–105, 2001.

    Google Scholar 

  68. P. Villars, Factors governing crystal structures. In: J.H. Westbrook and R.L. Fleischer (eds.), vol. 1, John Wiley & Sons, New York, pp. 227–275, 1994.

    Google Scholar 

  69. J.K. Burdett and J. Rodgers, “Structure & property maps for inorganic solids,” In: R.B. King (ed.), Encyclopedia of Inorganic Chemistry, vol. 7, John Wiley & Sons, New York, 1994.

    Google Scholar 

  70. D.G. Pettifor, “The structures of binary compounds: I. Phenomenological structure maps,” J. Phys. C: Solid State Phys., 19, 285–313, 1986.

    Article  ADS  Google Scholar 

  71. D.G. Pettifor, “A chemical scale for crystal-structure maps,” Solid State Commun., 51, 31–34, 1984.

    Article  ADS  Google Scholar 

  72. D. Morgan, J. Rodgers, and G. Ceder, “Automatic construction, implementation and assessment of Pettifor maps,” J. Phys. Condens. Matter, 15, 4361–4369, 2003.

    Article  ADS  Google Scholar 

  73. G.A. Landrum, Prediction of Structure Types for Binary Compounds, Rational Discovery, Inc., Palo Alto, pp. 1–8, 2001.

    Google Scholar 

  74. YH. Pao, B.F. Duan, YL. Zhao, and S.R. LeClair, “Analysis and visualization of category membership distribution in multivariate data,” Eng. Appl. Artif. Intell., 13, 521–525, 2000.

    Article  Google Scholar 

  75. A. Rajagopalan, C.W. Suh, X. Li, and K. Rajan, “Secondary” descriptor development for zeolite framework design: an informatics approach, Appl. Catal. A, 254, 147–160, 2003.

    Article  Google Scholar 

  76. K. Rajan, Combinatorial materials science and material informatics laboratory (COSMIC), (http://www.rpi.edu/~rajank/materialsdiscovery/).

  77. F.R. de Boer, R. Boom, W.C.M. Matten, A.R. Miedema, and A.K. Niessen, Cohesion in Metals: Transition Metal Alloys, North Holland, Amsterdam, 1988.

    Google Scholar 

  78. J.L.C. Daams, “Atomic environments in some related intermetallic structure types,” In: J.H. Westbrook and R.L. Fleischer (eds.), Intermetallic Compounds, Principle and Practice, vol. 1, John Wiley & Sons, New York, pp. 227–275, 1994.

    Google Scholar 

  79. S. Dietmann, J. Park, C. Notredame, A. Heger, M. Lappe, and L. Holm, “A fully automatic evolutionary classification of protein folds: Dali domain dictionary version 3,” Nucleic Acids Res., 29, 55–57, 2001.

    Article  Google Scholar 

  80. M. Jansen, “A concept for synthesis planning in solid-state chemistry,” Angew. Chem. Int. Ed., 41, 3747–3766, 2002.

    Google Scholar 

  81. S.M. Woodley, P.D. Battle, J.D. Gale, and C.R.A. Catlow, “The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation,” Phys. Chem. Chem. Phys., 1, 2535–2542, 1999.

    Article  Google Scholar 

  82. G.H. Johannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, and J.K. Norskov, “Combined electronic structure and evolutionary search approach to materials design,” Phys. Rev. Lett., 88, pp. 255506–1–255506–5, 2002.

    Article  ADS  Google Scholar 

  83. D. deFontaine, “Cluster approach to order-disorder transformations in alloys,” In: Solid State Physics, H. Ehrenreich and D. Turnbull (eds.), vol. 47, Academic Press, pp. 33–77 1994.

    Google Scholar 

  84. A. Zunger, “First-principles statistical mechanics of semiconductor alloys and intermetallic compounds,” Statics and Dynamics of Alloy Phase Transformations, New York, 1994.

    Google Scholar 

  85. V. Blum and A. Zunger, “Structural complexity in binary bcc ground states: The case of bcc Mo-Ta,” Phys. Rev. B, 69, pp. 020103–1–020103–4, 2004.

    Article  ADS  Google Scholar 

  86. G. Ceder, “Predicting properties from scratch,” Science, 280, 1099–1100, 1998.

    Article  Google Scholar 

  87. A. van de Walle, M. Asta, and G. Ceder, “The alloy theoretic automated toolkit: A user guide,” Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 26, 539–553, 2002.

    Google Scholar 

  88. S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, and G. Ceder, “Predicting crystal structures with data mining of quantum calculations,” Phy. Rev. Lett., 91, 2003.

    Google Scholar 

  89. B. Chan, M. Bibby, and N. Holtz, “Predicting 800 to 500 Degrees C Weld Cooling Times by using Backpropagation Neural Networks,” Trans. Can. Soc. Mech. Eng., 20, 75, 1996.

    Google Scholar 

  90. T. Bligaard, G.H. Johannesson, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, and J.K. Norskov, “Pareto-optimal alloys,” Appl. Phys. Lett., 83, 4527–4529, 2003.

    Article  ADS  Google Scholar 

  91. S. Curtarolo, D. Morgan, and G. Ceder, “Accuracy of ab initio methods in predicting the crystal structures of metals: Review of 80 binary alloys,” submitted for publication, 2004.

    Google Scholar 

  92. A. Franceschetti and A. Zunger, “The inverse hand-structure problem of finding an atomic configuration with given electronic properties,” Nature, 402, 60–63, 1999.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Morgan, D., Ceder, G. (2005). Data Mining in Materials Development. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_19

Download citation

Publish with us

Policies and ethics