Skip to main content

Biocatalysts in Organic Synthesis

  • Chapter
Book cover New Trends in Green Chemistry
  • 1101 Accesses

Abstract

The most important conversions in the context of green chemistry is with the help of enzymes. Enzymes are also referred to as biocatalysts and the transformations are referred to as biocatalytic conversions. Enzymes are now easily available and are an important tool in organic synthesis. The earliest biocatalytic conversion known to mankind is the manufacture of ethyl alcohol from molasses, the mother liquor left after the crystallisation of cane sugar from concentrated cane juice. This transformation is brought about by the enzyme ‘invertase’ which converts sucrose into glucose and fructose and finally by the enzyme zymase which converts glucose and fructose into ethyl alcohol. It is well known that most of the antibiotics have been prepared using enzymes (enzymatic fermentation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kiener, CHEMTECH, September 1995, pp. 31–35.

    Google Scholar 

  2. I.M. Shirley and S.C. Taylor, J. Chem. Soc. Chem. Commun., 1983, 954.

    Google Scholar 

  3. S.V. Ley and A.J. Redgrave, J. Synlett., 1990, 393.

    Google Scholar 

  4. S.V. Ley, F. Sternferd and S. Taylor, Tetrahedron Lett., 1987, 28, 225.

    Article  CAS  Google Scholar 

  5. A. Kleinzeller and Z. Fenel, Chem. Listy, 1952, 46, 300; Chem. Abstr., 1953, 47, 4290.

    Google Scholar 

  6. D.T. Gibson, J.R. Koch, C.L. Schuld and R.E. Kallio, Biochemistry, 1968, 7, 3795;

    Article  CAS  Google Scholar 

  7. D.T. Gibson, M. Hansley, H. Yoshioka and T.J. Mabry, Biochemistry, 1970, 9, 1626.

    Article  CAS  Google Scholar 

  8. T. Hudlicky and J.D. Price, Synlett., 1990, 159;

    Google Scholar 

  9. T. Hudlicky, H. Lund, J.D. Price and F. Rulin, Tetrahedron Leu., 1989, 30, 4053.

    Article  CAS  Google Scholar 

  10. C.J. Sih and J.P. Rosazza, in Applications of Biochemical Systems in Organic Chemistry; J.B. Jones, C.J. Sih and D. Perlman, Eds., Wiley, New York, 1976; Part II, pp. 100–102;

    Google Scholar 

  11. G.S. Fanken and R.A. Johnson, Chemical Oxidations with Microorganisms, Marcel Dekker, New York, 1972, pp. 157–164.

    Google Scholar 

  12. C.C. Ryerson, D.P. Ballou and C. Walsh, Biochemistry, 1982, 21, 2644;

    Article  CAS  Google Scholar 

  13. N.A. Donoghu, D.B. Norris and P.W. Trudgill, Eur. J. Biochem., 1976, 63, 175.

    Article  Google Scholar 

  14. B.P. Branchaud and C.T. Walsh, J. Am. Chem. Soc., 1985, 107, 2153.

    Google Scholar 

  15. J.D. Blck and M.J. Taschner, J. Am. Chem. Soc., 1988, 110, 6892.

    Article  Google Scholar 

  16. Ch. Tamm, Angew. Chem., 1962, 74, 225; Angew. Chem. Int., Ed. 1962, 1, 78;

    Google Scholar 

  17. D. Perlan (ed.), Fermentation Advances, Academic, New York, 1969;

    Google Scholar 

  18. K. Kieslich, Synthesis, 1969, 120;

    Google Scholar 

  19. W. Charney and H.L. Herzog, Microbial Transformations of Steroids, Academic, New York, 1967;

    Google Scholar 

  20. A. Capek, O. Hanc and M. Tadra, Microbial Transformations of Steroids, Academia, Prague, 1966;

    Google Scholar 

  21. M. Raynaud, Ph. Daste, F. Grossin, J.F. Biellmann and R. Wennig, Ann. Inst., Pasteur, 1960, 115, 731;

    Google Scholar 

  22. H. Tizuka and A. Naqito, Microbial Transformation of Steroids and Alkaloids, University Park Press, State College, Pennsylvania, 1967;

    Google Scholar 

  23. J.B. Davis, Petroleum Microbiology, Elsevier, Amsterdam, 1967;

    Google Scholar 

  24. C. Ralledge, Chem. Ind., 1970, 843;

    Google Scholar 

  25. L. Wallen, F.H. Stodola and R.W. Jacksom, Type Reactions in Fermentation Chemistry, U.S. Department of Agriclture, 1959, pp. 185189;

    Google Scholar 

  26. D.W. Ribbons, Ann. Rept. Chem. Soc., London, 1965, 62, 445;

    CAS  Google Scholar 

  27. W.C. Evans, Ann. Rept.Chem. Soc., London, 1956, 53, 279;

    Google Scholar 

  28. O. Hayashi and M. Noyaki, Science, 1969, 164, 338;

    Google Scholar 

  29. D.T. Gibson, Science, 1968, 161, 1093;

    Article  CAS  Google Scholar 

  30. Grunther S. Fonken and Roy A. Johnson, Chemical Oxidations with Microorganism, Mercel Dekker, New York, 1972.

    Google Scholar 

  31. D.H. Peterson and H.C. Murray, J. Am. Chem. Soc., 1952,174, 1871;

    Article  Google Scholar 

  32. H.C. Murray and D.H. Peterson, U.S. Patent, 2, 602, 769 (July 8, 1952 ).

    Google Scholar 

  33. W.F. Vander Waard, D. Vander Sijde and J. de Flines, Trans. Chim., 1966, 85, 712.

    Google Scholar 

  34. P. Crabbe and C. Cassas Campillo, U.S. Patent, 3, 375, 175 (March 26, 1968 ).

    Google Scholar 

  35. I.I. Zaretskaya, L.M. Kogan, O.B. Tikhomirova, Jr., D. Sis, N.S. Wulfon, V.I. Zareksu, V.G. Zaikin, G.K. Skrybin and I.V. Torgov, Tetrahedron, 1968, 24, 1595.

    Article  CAS  Google Scholar 

  36. J. Ureaht, E. Vischer and A. Wettstein, Held. Chim. Acta, 1996, 43, 1077.

    Google Scholar 

  37. J.T. McCurdy and R.D. Garrett, J. Org. Chem., 1968, 33, 660.

    Article  CAS  Google Scholar 

  38. F.J. Fried, R.W. Thoma and A. Klingsberg, J. Am. Chem. Soc., 1953, 75, 5764.

    Article  CAS  Google Scholar 

  39. R.L. Prairie and P. Talalay, Biochemistry, 1963, 2, 203.

    Article  CAS  Google Scholar 

  40. B.P. Branchaud and C.T. Walsh, J. Am. Chem. Soc., 1985, 107, 2153.

    Google Scholar 

  41. J.B. Jones and I.J. Jokovac, Org. Synth., 1984, 63, 10.

    Google Scholar 

  42. J. Grunwald, B. Wirz, M.P. Scollar and A.M. Klibanov, J. Am. Chem. Soc., 1986, 108, 6732.

    Article  CAS  Google Scholar 

  43. A. Brossi, A. Ramel, J. O’Brien and S. Teitel, Chem. Pharm. Bull., 1973, 21, 1839.

    Article  CAS  Google Scholar 

  44. B.C. Saunders and B.P. Stark, Tetrahedron, 1967, 23, 1867.

    Article  CAS  Google Scholar 

  45. R.Z. Kazandjian and A.M. Klibanov, J. Am. Chem. Soc., 1985, 107, 5448.

    Article  CAS  Google Scholar 

  46. Milos Hudlicky, Oxidations in Organic Chemistry, ACS Monograph 186, American Chemical Society, Washington DC, 1990.

    Google Scholar 

  47. G.S.Y. Ng., L.C. Yuan, I.J. Jakovac and J.B. Jones, Tetrahedron, 1984, 40, 1235.

    Google Scholar 

  48. J.B. Jones and I.J. Jakovac, Can. J. Chem., 1982, 60, 19.

    Article  CAS  Google Scholar 

  49. J.B. Jones, Methods Enzymol., 1976, 44, 831.

    Article  CAS  Google Scholar 

  50. V. Prelog, Pure Appl. Chem., 1964, 9, 119.

    Article  CAS  Google Scholar 

  51. B. Zhou, A.S. Gopalan, F. van Middlesworth, W.R. Shieh and C.J. Sih, J. Am. Chem. Soc., 1983, 105, 5925.

    Article  CAS  Google Scholar 

  52. K. Mori, Tetrahedron, 1981, 37, 1341.

    Article  CAS  Google Scholar 

  53. E. Kienam, E.K. Hafeli, K.K. Seth and R. Lamed, J. Am. Chem. Soc., 1986, 108, 162.

    Article  Google Scholar 

  54. R.W. Hoffman, W. Helbig and W. Landner, Tetrahedron Letters, 1982, 23, 3479.

    Article  Google Scholar 

  55. J. Bolte, J.G. Gourey and H. Veschambre, Tetrahedron Lett., 1986, 27, 4051.

    Article  Google Scholar 

  56. R. Bernardi, R. Cardillo and D. Ghiringhelli, J. Chem. Soc. Chem. Commun., 1984, 460.

    Google Scholar 

  57. J.K. Lieser, Synth. Commun., 1982, 13

    Google Scholar 

  58. W.H. Zhou, D.Z. Hung, O.C. Deng, Z.P. Zhuang and Z.O. Wang, Nat. Prd. Proc. SinoAm. Symp.,1980, 299; Chem. Abstr.,1983, 88 198545w.

    Google Scholar 

  59. M. Bostmembrum-Desrut, G. Douphin, A. Kergomard, M.F. Renard and H. Veschambre, Tetrahedron, 1985, 41, 3679.

    Article  Google Scholar 

  60. C.H. Wong and G.M. Whitesides, J. Am. Chem. Soc.,1983, 105 5012. Biocatalysts in Organic Synthesis 107

    Google Scholar 

  61. A.R. Battershy, P.W. Sheldrake, J. Staunton and D.C. Williams, J. Chem. Soc. Perkin Trans., 1976, 1, 1056.

    Article  Google Scholar 

  62. D.R. Dodds and J.B. Jones, J. Chem. Soc. Chem. Commun., 1982, 1080.

    Google Scholar 

  63. C.H. Wong and G.M. Whitesides, J. Am. Chem. Soc., 1983, 105, 5012.

    Article  CAS  Google Scholar 

  64. B.C. Hirschbein and G.M. Whitesides, J. Am. Chem. Soc., 1982, 104, 4458.

    Article  CAS  Google Scholar 

  65. Y. Ito, T. Shibata, M. Arita, H. Sawai and M. Ohno, J. Am. Chem. Soc., 1981, 103, 6739.

    Article  CAS  Google Scholar 

  66. H.J. Gais and K.L. Lukas, Angew. Chem., 1984, 96, 140; Angew. Chem. Int. Ed. Engl., 1984, 23, 142.

    Article  Google Scholar 

  67. S. Kobayashi, K. Kamiyama, T. Limori and M. Ohno, Tetrahedron Lett., 1984, 23, 2557.

    Google Scholar 

  68. F.C. Huang, L.F.H. Lee, R.S.D. Mittal, P.R. Ravi Kumar, J.A. Chan and C.J. Sih, J. Am. Chem. Soc., 1975, 97, 4144;

    Article  CAS  Google Scholar 

  69. C.H. Chervenka and P.E. Wilson, J. Biol. Chem., 1956, 222, 635.

    CAS  Google Scholar 

  70. Y.F. Wang, T. Izawa, S. Kabayaski and M. Ohno, J. Am. Chem. Soc., 1982, 104, 6465.

    Article  CAS  Google Scholar 

  71. C.J. Francis, J.B. Jones, J. Chem. Soc. Chem. Commun., 1984, 579.

    Google Scholar 

  72. Y.F. Wang, C.S. Chen, G. Girdaukas and C.J. Sih, J Am. Chem. Soc., 1984, 106, 3695.

    Article  CAS  Google Scholar 

  73. I. Chibata, Immobilized Enzymes — Research and Development, Halsted Press, New York, 1978;

    Google Scholar 

  74. Y. Izumi, I. Chibata and T. Itoh, Angew. Chem., 1978, 90, 187; Angew. Chem. Int. Ed., Engl., 1978, 17, 176.

    Article  CAS  Google Scholar 

  75. H.D. Jakubki, P. Kuhl and A. Könnecke, Angew. Chem., 1985 (97); Angew. Chem. Int. Ed. Engl., 1985, 24, 85.

    Article  Google Scholar 

  76. B.J. Abbott, Adv. Appl. Microbiol., 1976, 20, 203.

    Article  CAS  Google Scholar 

  77. D.L. Regan, M.D. Dunnill and M.D. Lilly, Biotechnol. Bioeng., 1974, 16, 333.

    Article  CAS  Google Scholar 

  78. H.M. Walton, J.E. Eastman and A.E. Staly, Biotechnol. Bioeng., 1973, 447;

    Google Scholar 

  79. J.H. Wilson and M.D. Lilly, Biotechnol. Biology, 1969, 11, 349;

    Article  CAS  Google Scholar 

  80. J.J. Marshall and W.J. Whelan, Chem. Ind., London, 1971, 25, 701;

    Google Scholar 

  81. C. Gruesbeck and H.F. Rase, Ind. End. Chem. Proc. Res. Dey., 1972, 11, 74.

    Article  CAS  Google Scholar 

  82. H.H. Weetall, Process Biochem., 1975, 10, 3;

    CAS  Google Scholar 

  83. H.H. Weetall, W.P. Vann, W.H. Pitcher, Jr., D.D. Lee, Y.Y. Lee et al., Methods Enzymol, 1976, 44, 776;

    Article  CAS  Google Scholar 

  84. G.W. Strandberg and K.L. Similey, Appl. Microbiol., 1971, 21, 588;

    CAS  Google Scholar 

  85. N.B. Havewala and W.H. Pitcher, Jr., Enzyme Eng., 1974, 2, 315;

    Article  Google Scholar 

  86. N.H. Mermelstein, Food Technol., Chicago, 1975, 29, 20.

    Google Scholar 

  87. T. Tosa, T. Sato, T. Mori, Y. Matuo and I. Chibata, Biotechnol. Biology, 1973, 15, 69.

    Article  CAS  Google Scholar 

  88. K. Yamamoto, T. Tosa, K. Yamashita and I. Chibata, Eur. J Appl. Microbiol., 1976, 3, 169.

    Article  CAS  Google Scholar 

  89. W. Becker and E. Pteil, J. Am. Chem. Soc., 1966, 88, 4299.

    Article  CAS  Google Scholar 

  90. B. Chabannes, A. Garib, L. Cronenberger and H. Pacheco, Prep. Biochem., 1983, 12, 395;

    CAS  Google Scholar 

  91. R.C. Knudsen and I. Yall, J. Bacteriol., 1972, 112, 569;

    CAS  Google Scholar 

  92. S.K. Shapiro and D.J. Ehninger, Anal. Biochem., 1966, 15, 323.

    Article  CAS  Google Scholar 

  93. G. Rao, H.O.O. Schmid, K.R. Reddy and J.G. White, Biochem. Biphys. Acta, 1982, 715, 205;

    Article  CAS  Google Scholar 

  94. H. Eibi, Angew. Chem. Int. Ed. Eng.,1984, 23 257 (a review).

    Google Scholar 

  95. A.R. Battersby, Chem. Ber., 1984, 20, 611.

    CAS  Google Scholar 

  96. Y. Izumi, I. Chibata and T. Itoh, Ang. Chem. Int. Ed. Engl., 1978, 17, 176.

    Article  CAS  Google Scholar 

  97. Y. Asano, T. Yasuda, Y. Tani and H. Yamada, Agric. Biol. Chem., 1982, 46, 1183.

    Article  CAS  Google Scholar 

  98. M. Ohno, Ferment. Ind. Tokyo,1979, 37 836; H. Sato, Jap. Patent 75 140 684, Japan Kokai; Chem. Abstr.,1975, 84 149212;

    Google Scholar 

  99. R.H. Allen, W.B. Jakoby, J. Biol. Chem., 1969, 244, 2078.

    Google Scholar 

  100. A. Gross, O. Abril, J.M. Lewis, S. Geresh and G.M. Whitesides, J. Am. Chem. Soc., 1983, 205, 7428.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Anamaya Publishers, New Delhi, India

About this chapter

Cite this chapter

Ahluwalia, V.K., Kidwai, M. (2004). Biocatalysts in Organic Synthesis. In: New Trends in Green Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3175-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3175-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7102-9

  • Online ISBN: 978-1-4020-3175-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics