Skip to main content

Oxygen Movement in Seagrasses

  • Chapter

Abstract

Seagrasses are, like all vascular plants, obligate aerobes, which require a continuous supply of oxygen to sustain aerobic metabolism of both above- and below-ground tissues. Compared to their leaves, seagrass roots and rhizomes may experience oxygen deprivation for shorter periods, but these below-ground tissues exhibit physiological adaptations which allow them to rely temporarily on anaerobic fermentative metabolism (Pregnall et al., 1984; Smith et al., 1988). Aerobic respiration is energetically about 10 times more efficient than fermentative processes, which tend to accumulate ethanol, acetate, and other potentially toxic metabolites representing a threat to tissue survival (Smith et al., 1988; Crawford and Braendle, 1996). The meristematic tissues, located in the transition betweenwater column and sediment, are especially vulnerable to low oxygen supply and exposure to anaerobic metabolites due to their high metabolic activity and the continuous oxygen supply required for mitotic growth. In addition to the importance of oxygen inside seagrass tissues, maintenance of oxic conditions around roots may provide efficient protection against invasion of reduced toxic compounds and metal ions from the surrounding sediment (Armstrong et al., 1992; Crawford and Braendle, 1996; see also Marbá et al., Chapter 6). Accordingly, there are several benefits to plant performance in maintaining a rich oxygen supply to all tissues including roots and rhizomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelstein U (1910) Uber die Kohlensäureassimilation submerserWasserpflanzen in Bikarbonat-und Karbonatlösungen. Beitrage Biologie Pflanzen 10: 87–117

    Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and water logging. Physiologia Plantarum 25: 192–197

    Article  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Botanical Res 7: 225–332

    Article  CAS  Google Scholar 

  • Armstrong J and Armstrong W (1990) Light-enhanced convective through flow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. Ex Steud. New Phytol 114: 121–128

    Article  Google Scholar 

  • Armstrong J, Armstrong W and Beckett PM (1992) Phragmites australis: Venturi- and humidity-induced convections enhance rhizome aeration and rhizosphere oxidation. New Phytol 120: 197–207

    Article  Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R and Sinclair A (1996) Pathways of aeration and the mechanisms and beneficial effects of humidity- and venturiinduced convections in Phragmitis australis (Cav.) Trin. ex Steud. Aquat Bot 54: 177–198

    Article  Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW and Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A microelectrode and modelling study with Phragmitis australis. Ann Bot 86: 687–703

    Article  Google Scholar 

  • Armstrong W, Strange ME, Cringle S and Beckett PM (1994) Microelectrode and modelling study of oxygen distribution in roots. Ann Bot 74: 287–299

    Article  Google Scholar 

  • Borum J (1985) Development of epiphytic communities on eelgrass (Zostera marina) along a nutrient gradient in a Danish estuary. Mar Biol 87: 211–218

    Article  Google Scholar 

  • Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW and Madden C (2005) The potential role of plant oxygen and sulphide dynamics in die-off events in tropical seagrass, Thalassia testudinum. J Ecol 93: 148–158

    Article  CAS  Google Scholar 

  • Bowes G (1985) Pathways of CO2 fixation by aquatic organisms. In: Lucas WJ and Berry JA (eds) Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms, pp 187–210. American Society of Plant Physiology, Rockville, MD, USA

    Google Scholar 

  • Bowling DJF (1973) Measurement of gradient of oxygen partial pressure across the intact root. Planta 111: 323–328

    Article  CAS  Google Scholar 

  • Brix H, Sorrell BK and Orr PT (1992) Internal pressurization and convective gas flowin some emergent freshwater macrophytes. Limnology Oceanography 37: 1420–1433

    Google Scholar 

  • Caffrey JM and Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Prog Ser 66: 147–160

    CAS  Google Scholar 

  • Caffrey JM and Kemp WM (1991) Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Chapter 10 Oxygen Movement in Seagrasses 269 Potamogeton perfoliatus L. and Zostera marina L. Aquat Bot 40: 109–128

    Article  Google Scholar 

  • Caffrey JM and Kemp WM (1992) Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnology Oceanography 37: 1483–1495

    CAS  Google Scholar 

  • Carlson PR and Forrest JH (1982) Uptake of dissolved sulfide by Spartina alterniflora: Evidence from natural sulfur isotope ratios. Science 216: 158–162

    Article  Google Scholar 

  • Carlson PR Jr, Yarbro LA, Sargent WB and Arnold HA (1988) Hypoxic stress in Thalassia testudinum: Evidence from diurnal changes in rhizome gas composition. Eos 69: 1115

    Google Scholar 

  • Christensen PB and Sørensen J (1986) Temporal variation of denitrification activity in plant-covered littoral sediment from Lake Hampen, Denmark. Appl Environ Microbiol 51: 1174–1179

    PubMed  CAS  Google Scholar 

  • Christensen PB, Revsbech NP and Sand-Jensen K (1994) Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) Ascherson. Plant Physiol (Lancaster) 105: 847–852

    CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26: 17–36

    Article  CAS  Google Scholar 

  • Connell EL, Colmer TD and Walker DI (1999) Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat Bot 63: 219–228

    Article  Google Scholar 

  • Crawford RMM and Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47: 145–159

    Article  CAS  Google Scholar 

  • Dacey JWH (1981) Internal winds in water lilies: An adaptation to life in anaerobic sediments. Science 210: 1017–1019

    Article  Google Scholar 

  • Drew EA (1979) Physiological aspects of primary production in seagrasses. Aquat Bot 7: 139–150

    Article  CAS  Google Scholar 

  • Drew MC, He C-J and Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Flindt MR (1994) Measurements of nutrient fluxes and mass balances by on-line in situ dialysis in Zostera marina bed culture. Vereinigung für Theoretische und Angewandte Limnologie 25: 2259–2264

    CAS  Google Scholar 

  • Glud RN, Gundersen JK, Revsbech NP and Jørgensen BB (1994) Effects on the benthic diffusive boundary layer imposed by microelectrodes. Limnology Oceanography 39: 462–467

    Article  Google Scholar 

  • Glud RN, Ramsing NB, Gundersen JK and Klimant I (1996) Planar optodes: A new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar Ecol Prog Ser 140: 217–226

    Google Scholar 

  • Greve TM, Borum J and Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnology Oceanography 48: 210–216

    Article  Google Scholar 

  • Hartman RT and Brown DL (1967) Changes in internal atmosphere of submersed vascular hydrophytes in relation to photosynthesis. Ecology 48: 252–258

    Article  Google Scholar 

  • Hemminga MA (1998) The root/rhizome system of seagrasses: An asset and a burden. J Sea Res 39: 183–196

    Article  Google Scholar 

  • Hemminga MA and Duarte CM (2000) Seagrass Ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kemp WM, Lewis MR and Jones TW (1986) Comparison of methods for measuring production by the submersed macrophyte, Potamogeton perfoliatus L. Limnology Oceanography 31: 1322–1334

    CAS  Google Scholar 

  • Kemp WM and Murray L (1986) Oxygen release from the roots of the submersed macrophyte Potamogeton perfoliatus L.: Regulating factors and ecological implications. Aquat Bot 26: 271–283

    Article  Google Scholar 

  • Kuo J and McComb AJ (1989) Seagrass taxonomy, structure and development. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses, pp 6–73. Elsevier, Amsterdam

    Google Scholar 

  • Kuo J, McComb AJ and Cambridge ML (1981) Ultrastructure of the seagrass rhizosphere. New Phytolo 89: 139–143

    Article  Google Scholar 

  • Larkum AWD, Roberts G, Kuo J and Strother S (1989) Gaseous movement in seagrasses. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses, pp 686–722. Elsevier, Amsterdam

    Google Scholar 

  • Lee RW, Kraus DW and Doeller JE (1999) Oxidation of sulfide by Spartina alterniflora roots. Limnology Oceanography 44: 1155–1159

    Article  CAS  Google Scholar 

  • Lee K-S and Dunton KH (2000) Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: The effects of seagrasses on sulfide dynamics. J Exp Mar Biol Ecol 225: 201–214

    Article  Google Scholar 

  • Marsh JA, Dennison WC and Alberte RC (1986) Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). J Exp Mar Biol Ecol 101: 257–267

    Article  Google Scholar 

  • Masini RJ and Manning CR (1997) The photosynthetic responses to irradiance and temperature of four meadow-forming seagrasses. Aquat Bot 58: 21–36

    Article  CAS  Google Scholar 

  • Masini RJ, Cary JL, Simpson CJ and McComb AJ (1995) Effects of light and temperature on the photosynthesis of temperate meadow-forming seagrasses in Western Australia. Aquat Bot 49: 239–254

    Article  Google Scholar 

  • McDonald MP, Galwey NW and Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25: 441–451

    Article  Google Scholar 

  • Mendelssohn IA and Postek MT (1982) Elemental analysis of deposits on the roots of Spartina alterniflora Loisel. Am J Bot 69: 904–912

    Article  Google Scholar 

  • Nielsen SL and Sand-Jensen K (1989) Regulation of photosynthetic rates of submerged rooted macrophytes. Oecologia 81: 364–368

    Google Scholar 

  • Oremland RS and Taylor BF (1976) Diurnal fluctuations of O2, N2 and CH4 in the rhizosphere of Thalassia testudinum. Limnology Oceanography 22: 566–570

    Google Scholar 

  • Pedersen O, Borum J and Binzer T (2004) Sulfide intrusion in eelgrass (Zostera marina). Plant Cell Environ 27: 595–602

    Article  CAS  Google Scholar 

  • Pedersen O, Borum J, Duarte CM and Fortes MD (1998) Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 169: 283–288

    CAS  Google Scholar 

  • Pedersen O, Borum J, Duarte CM and Fortes MD (1999) Erratum: Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 178: 310

    CAS  Google Scholar 

  • Pedersen O, Sand-Jensen K and Revsbech NP (1995) Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 76: 1536–1545

    Article  Google Scholar 

  • Penhale PA and Wetzel RG (1983) Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Can J Bot 61: 1421–1428

    Google Scholar 

  • Pregnall AM, Smith RD, Kursar TA and Alberte RS (1984) Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Mar Biol 83: 141–147

    Article  CAS  Google Scholar 

  • Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnology Oceanography 34: 474–478

    Article  CAS  Google Scholar 

  • Risgaard NP, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K and Nielsen LP (1998) Nitrogen balance of a temperate eelgrass, Zostera marina, bed. Mar Ecol Prog Ser 174: 281–291

    Google Scholar 

  • Robblee MB, Carlson TR, Durako MJ, Fourqurean JW, Muehlstein LK, Porter D, Yarbro LA, Zieman RT and Zieman JC (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar Ecol Prog Ser 71: 297–299

    Google Scholar 

  • Roberts DG and Moriarty DJW (1987) Lacunar gas discharge as a measure of productivity in the seagrasses Zostera capricorni, Cymodocea serrulata, and Syringodium isoetifolium. Aquat Bot 28: 143–160

    Article  Google Scholar 

  • Rysgaard S, Riisgaard NP and Sloth NP (1996) Nitrification, denitrification and nitrate ammonification in sediments of two coastal lagoons in Southern France. Hydrobiologia 329: 133–141

    Article  CAS  Google Scholar 

  • Saglio PH, Rancillac M, Bruzan F and Pradet A (1984) Critical oxygen pressure for growth and respiration of excised and intact roots. Plant Physiol (Lancaster) 76: 151–154

    CAS  Google Scholar 

  • Sand-Jensen K (1977) Effects of epiphytes on eelgrass photosynthesis. Aquat Bot 3: 55–63

    Article  CAS  Google Scholar 

  • Sand-Jensen K, Prahl C and Stockholm H (1982) Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349–354

    Article  Google Scholar 

  • Sand-Jensen K, Revsbech NP and Jørgensen BB (1985) Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Mar Biol 20: 109–119

    Google Scholar 

  • Smith RD, Dennison WC and Alberte RS (1984) Role of seagrass photosynthesis in root aerobic processes. Plant Physiol (Lancaster) 74: 1055–1058

    CAS  Google Scholar 

  • Smith RD, Pregnall AM and Alberte RS (1988) Effects of anaerobiosis on root metabolism of Zostera marina (eelgrass): Implications for survival in reducing sediments. Mar Biol 98: 131–141

    Article  CAS  Google Scholar 

  • Søndergaard M and Wetzel RG (1980) Photorespiration and internal recycling of CO2 in the submersed angiosperm Scirpus subterminalis. Can J Bot 58: 591–598

    Google Scholar 

  • Sorrell BK and Armstrong W (1994) On the difficulties of measuring oxygen release by root systems ofwetland plants. J Ecol 82: 177–183

    Article  Google Scholar 

  • Sorrell BK and Dromgoole FI (1987) Oxygen transport in the submerged freshwater macrophyte Egeria densa Planch. I. Oxygen production, storage and release. Aquat Bot 28: 63–80

    Article  Google Scholar 

  • Sorrell BK and Dromgoole FI (1988) Oxygen transport in the submerged freshwater macrophyte Egeria densa Planch. II. Role of lacunar gas pressure. Aquat Bot 31: 93–106

    Article  CAS  Google Scholar 

  • Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, Fortes MD, Borum J, Lubanski M and Greve TM (1999) Are seagrass growth and survival constrained by the reducing conditions of the sediment. Aquat Bot 65: 175–197

    Article  Google Scholar 

  • Touchette BW and Burkholder JM (2000) Overview of the physiological ecology of carbon metabolism in seagrasses. J Exp Mar Biol Ecol 250: 169–205

    Article  PubMed  CAS  Google Scholar 

  • Ziegler S and Benner R (1998) Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Mar Ecol Prog Ser 173: 1–12

    Google Scholar 

  • Zieman JC (1974) Methods for the study of growth and production of turtlegrass Thalassia testudinum König. Aquaculture 4: 139–143

    Article  Google Scholar 

  • Zimmerman RC and Alberte RS (1996) Effect of light/dark transition on carbon translocation in eelgrass Zostera marina seedlings. Mar Ecol Prog Ser 136: 305–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Borum, J., Sand-Jensen, K., Binzer, T., Pedersen, O., Greve, T.M. (2007). Oxygen Movement in Seagrasses. In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_10

Download citation

Publish with us

Policies and ethics