Skip to main content

Partitioning Carbon Fluxes Within Forest Stand Beneath Flux Tower, Methodology And Application

  • Conference paper
  • 309 Accesses

Emissions of carbon dioxide (CO2) from fossil fuel combustion and total anthropogenic emissions have been increasing by around 6.3 and 8.0 Gt C yr-1, respectively (IPCC 1996), of which 3 Gt C year-1 has been explicitly linked to ‘uptake by Northern Hemisphere forest regrowth’ and to additional terrestrial sinks resulting from the combination of CO2 fertilization, nitrogen deposition, and increasing temperature indirect effects. However, little scientific evidence for the ‘additional terrestrial sinks’ has yet been shown to confirm this, except for relatively short-term results from CO2 enrichment experiments. The Kyoto Protocol was adopted in 1997, requesting that developed countries reduce their total CO2 emissions by 2008-2012 to 92-95% of the level in 1990, taking the CO2 balance of their forest ecosystems into consideration. This has lead to greatly increased attempts to measure directly the fluxes of CO2 between the atmosphere and forest ecosystems. The main approach has been to use eddy covariance from towers above forest canopies to quantitatively evaluate the net ecosystem exchange of carbon dioxide over short periods (NEE). During the last five years many CO2 flux towers have been built worldwide (ref. FluxNet: AmeriFlux, CarboEuro, AsiaFlux, etc.). Based on the tower data collected by the CarboEuro program, Valentini et al. (2000) suggested that most of the 30 forest stands monitored to date function as sinks for atmospheric CO2, with the rate of increase rising from northern (boreal) to southern (warm-temperate) forests. Malhi et al. (1999) indicated that the magnitude of net carbon balance for tropical forest stands depends strongly on their biomass or net primary productivity. However, it is still not clear what suite of mechanisms in forest ecosystems collectively function to create a sink for carbon or where in any particular forest this occurs. Young forest stands generally function as carbon sinks, due to their positive increment in tree and litter biomass, and in some cases soil carbon. In this case, CO2 fertilization, nitrogen deposition, or human fertilization and other cultivation generally greatly increases the magnitude of the sink. Saigusa et al. (2002) and Goulden et al. (1996) found that variation in weather conditions (precipitation, temperature and radiation) could account for much of the annual fluctuation in annual NEE (or net ecosystem production, NEP), based on long-term tower data over cool-temperate forests in central Japan and the northeastern U.S., respectively. However, few such long-term studies exist in the world. One approach to resolution is to measure simultaneously the component carbon fluxes within ecosystems (e.g., CO2 fluxes of soil, root or stem respiration and photosynthesis), because the balance of CO2 fluxes at the tower is the net result of these fluxes (i.e., the balance between net CO2 assimilation by vegetation and the mineralization of carbon from soil organic matter). For example, Jarvis et al. (1997) attempted to do this beneath a tower at a boreal forest in Canada, although they found that the data could not be scaled up to the stand level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Nakane, K., Gholz, H.L. (2004). Partitioning Carbon Fluxes Within Forest Stand Beneath Flux Tower, Methodology And Application. In: Hong, SK., et al. Ecological Issues in a Changing World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2689-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2689-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2688-1

  • Online ISBN: 978-1-4020-2689-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics