Skip to main content

Phylogeny and molecular diagnosis of mycotoxigenic fungi

  • Chapter

Abstract

Phylogenetic studies of the fungi that produce the five major groups of mycotoxins are reviewed, with a focus on studies employing ribosomal and/or β-tubulin (BenA) gene sequences. The toxins aflatoxin and ochratoxin A are produced by several Aspergillus and Penicillium species classified in the Trichocomaceae, Eurotiales. The toxins fumonisin, deoxynivalenol and zearalenone are produced by several Fusarium species classified in the Nectriaceae, Hypocreales. Studies of ribosomal genes have revealed that the present generic concepts for Aspergillus, Penicillium and Fusarium will require some adjustment in order to conform to phylogenetic principles. Phylogenetic studies have resulted in generally narrower species concepts in all three genera but there is good correlation between these species and mycotoxin production. The development of molecular diagnostics for the critical mycotoxigenic species is considered, with particular emphasis on the development of DNA hybridization probes that can be used to detect and identify multiple species using species and/or Glade specific oligonucleotides designed from one or more genes. As an illustration, a virtual array for identifying Aspergillus species and groups of species producing aflatoxin is presented, based on oligonucleotides selected and optimized from a database of internal transcribed spacer and partial β-tubulin sequences assembled from GenBank. It was possible to design acceptable oligos for all species and groups in the complex using the β-tubulin gene, but only for one species and the larger group using the less variable internal transcribed spacer of the ribosomal DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarca ML, Accensi F, Bragulat MR, Castella G and Cabanes FJ (2003) Aspergillus carbonarius as the main source of ochratoxin A contamination in dried vine fruits from the Spanish market. Journal of Food Protection 66: 504–506.

    PubMed  CAS  Google Scholar 

  • Al-Mussalam A (1980) Revision of the black Aspergillus species. PhD, Rijkuniversiteit Utrecht, Utrecht, the Netherlands.

    Google Scholar 

  • Aoki T and O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group I population of F. graminearum. Mycologia 91: 597–609.

    Article  Google Scholar 

  • Berbee ML, Yoshimura A, Sugiyama J and Taylor JW (1995) Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87: 210–222.

    Article  CAS  Google Scholar 

  • Bluhm BH, Flaherty JE, Cousin MA and Woloshuk CP (2002) Multiplex polymerase chain reaction assay for the differential detection of trichothecene-and fumonisin-producing species of Fusarium in cornmeal. Journal of Food Protection 65: 1955–1961.

    PubMed  CAS  Google Scholar 

  • Britz H, Steenkamp ET, Coutinho TA, Wingfield BD, Marasas WFO and Wingfield BD (2002) Two new species of Fusarium section Liseola associated with mango malformation. Mycologia 94: 722–730.

    Article  PubMed  Google Scholar 

  • Burgess LW, Wearing AH and Toussoun TA (1975) Surveys of fusaria associated with crown rot of wheat in eastern Australia. Australian Journal of Agricultural Research 26: 791–799.

    Article  Google Scholar 

  • Ciegler A, Lee LS and Dunn Ji (1981) Production of naphthoquinone mycotoxins and taxonomy of Penicillium viridicatum. Applied and Environmental Microbiology 42: 446–449.

    PubMed  CAS  Google Scholar 

  • Cotty PJ (1989) Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology 79: 808–814.

    Article  Google Scholar 

  • Cruickshank RH and Pitt JI (1987) Identification of species in Penicillium subgenus Penicillium by enzyme electrophoresis. Mycologia 79: 614–620.

    Article  Google Scholar 

  • Edwards SG, O’Callaghan J and Dobson ADW (2002) PCRbased detection and quantification of mycotoxigenic fungi. Mycological Research 106: 1005–1025.

    Article  CAS  Google Scholar 

  • Egel DS, Cotty PJ and Bhatnagar D (1994) Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Applied and Environmental Microbiology 60: 2248–2251.

    Google Scholar 

  • Ehrlich KC, Montalbano BG and Cotty PJ (2003) Sequence comparison of aflR from different Aspergillus species provides evidence for variability in regulation of aflatoxin production. Fungal Genetics and Biology 38: 63–74.

    Article  PubMed  CAS  Google Scholar 

  • Farber P, Geisen R and Holzapfel HW (1997) Detection of aflatoxigenic fungi in figs by a PCR reaction. International Journal of Food Microbiology 36: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Feibelman TP, Cotty PJ, Doster MA and Michailides TJ (1998) A morphologically distinct strain of Aspergillus nomius. Mycologia 90: 618–623.

    Article  Google Scholar 

  • Fessehaie A, De Boer SH and Lévesque CA (2003) An oligonucleotide array for the identification and differentiation of bacteria pathogenic on potato. Phytopathology 93: 262–269.

    Article  PubMed  CAS  Google Scholar 

  • Fotso J, Leslie JF and Smith JS (2002) Production of beauvericin, moniliformin, fusaproliferin, and fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species. Applied and Environmental Microbiology 68: 5195–5197.

    Article  PubMed  CAS  Google Scholar 

  • Francis RG and Burgess LW (1977) Characteristics of two populations of Fusarium roseum `Graminearum’ in eastern Australia. Transactions of the British Mycological Society 68: 421–427.

    Article  Google Scholar 

  • Frisvad JC and Samson RA (2000) Neopetromyces gen. nov and an overview of teleomorphs of Aspergillus subgenus Circumdati. Studies in Mycology: 201–207.

    Google Scholar 

  • Frisvad JC, Bridge PD and Arora DK (eds) (1998) Chemical Fungal Taxonomy 398 pp. Marcel Dekker, New York, USA.

    Google Scholar 

  • Gams W and Nirenberg H (1989) A contribution to the generic delimitation of Fusarium. Mycotaxon 35: 407–416.

    Google Scholar 

  • Gams W, Christensen M, Onions AHS, Pitt JI and Samson RA (1985) Infrageneric taxa of Aspergillus. In: Pitt JI (ed), Advances in Penicillium and Aspergillus Systematics (pp. 5562 ) Plenum Press, New York, USA.

    Google Scholar 

  • Geiser DM, Pitt JI and Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences of the United States of America 95: 388–393.

    Article  PubMed  CAS  Google Scholar 

  • Geiser DM, Dorner JW, Horn BW and Taylor JW (2000) The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genetics and Biology 31: 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Gelderblom WCA, Jaskiewicz K, Marasas WFO, Thiel PG, Horak RM, Vleggaar R and Kriek NPJ (1988) Fumonisins — Novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environmental Microbiology 54: 1806–1811.

    PubMed  CAS  Google Scholar 

  • Gerlach W and Nirenberg H (1982) The genus Fusarium — a pictorial atlas. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft Berlin-Dahlem 209: 1406.

    Google Scholar 

  • Glass NL and Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

    PubMed  CAS  Google Scholar 

  • Haugland R and Vesper S (2002) Method of identifying and quantifying specific fungi and bacteria. US 6,387,652 B1. United States Environmental Protection Agency, USA.

    Google Scholar 

  • Heenan CN, Shaw KJ and Pitt JI (1998) Ochratoxin A production by Aspergillus carbonarius and A. niger isolates and detection using coconut cream agar. Journal of Food Mycology 1: 67–72.

    CAS  Google Scholar 

  • Ichinoe M, Kurata H, Sugiura Y and Ueno Y (1983) Chemotaxonomy of Gibberella zeae with special reference to production of trichothecenes and zearalenone. Applied and Environmental Microbiology 46: 1364–1368.

    PubMed  CAS  Google Scholar 

  • Ito Y, Peterson SW, Wicklow DT and Goto T (2001) Aspergillus pseudotamarii, a new aflatoxin producing species in Aspergillus section Flavi. Mycological Research 105: 233–239.

    Article  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands.

    Google Scholar 

  • Klich MA and Pitt JI (1988a) Differentiation of Aspergillus flavus from A. parasiticus and other closely related species. Transactions of the British Mycological Society 91: 99–108.

    Article  Google Scholar 

  • Klich MA and Pitt JI (1988b) A Laboratory Guide to Common Aspergillus Species and their Teleomorphs. CSIRO Division of Food Processing, North Ryde, Australia.

    Google Scholar 

  • Klich MA, Mullaney EJ, Daly CB and Cary JW (2000) Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by Aspergillus tamarii and A. ochraceoroseus. Applied Microbiology and Biotechnology 53: 605–609.

    Article  PubMed  CAS  Google Scholar 

  • Knoll S, Mulfinger S, Niessen L and Vogel RF (2002a) Rapid preparation of Fusarium DNA from cereals for diagnostic PCR using sonification and an extraction kit. Plant Pathology 51: 728–734.

    Article  CAS  Google Scholar 

  • Knoll S, Vogel RF and Niessen L (2002b) Identification of Fusarium graminearum in cereal samples by DNA Detection Test StipesTM. Letters in Applied Microbiology 34: 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Kozakiewicz Z (1989) Aspergillus species on stored products. Mycological Papers 161: 1–188.

    Google Scholar 

  • Kurtzman CP, Smiley MJ, Robnett CJ and Wicklow DT (1986) DNA relatedness among wild and domesticated species in the Aspergillus flavus group. Mycologia 78: 955–959.

    Article  Google Scholar 

  • Kurtzman CP, Horn BW and Hesseltine CW (1987) Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie Van Leeuwenhoek 53: 147–158.

    Article  PubMed  CAS  Google Scholar 

  • Kusters van Someren MA, Samson RA and Visser J (1991) The use of RFLP analysis in classification of the black Aspergilli — Reinterpretation of the Aspergillus niger aggregate. Current Genetics 19: 21–26.

    Article  Google Scholar 

  • Kwasna H, Chelkowski J and Zajkowski P (1991) Grzyby (Mycota), tom. XXII. Siepik (Fusarium). Polska Akademia Nauk, Flora Polska, Warszawa-Krakow, Poland.

    Google Scholar 

  • Larsen TO, Svendsen A and Smedsgaard J (2001) Biochemical characterization of Ochratoxin A-producing strains of the genus Penicillium. Applied and Environmental Microbiology 67: 3630–3635.

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF (1995) Gibberella fujikuroi: available populations and variable traits. Canadian Journal of Botany 73: S282–S291.

    Article  Google Scholar 

  • Lévesque CA (2001) Molecular methods for detection of plant pathogens — What is the future? Canadian Journal of Plant Pathology 24: 333–336.

    Article  Google Scholar 

  • Lievens B, Brouwer M, Vanachter A, Lévesque CA, Cammue B and Thomma B (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiology Letters 223: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • LoBuglio KF, Pitt JI and Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85: 592–604.

    Article  CAS  Google Scholar 

  • LoBuglio KF, Pitt JI and Taylor JW (1994) Independent origins of the synnematous Penicillium species, P. duclauxii, P. clavigerum and P. vulpinum, as assessed by two ribosomal DNA regions. Mycological Research 98: 250–256.

    Article  Google Scholar 

  • Lund F and Frisvad JC (1994) Chemotaxonomy of Penicillium aurantiogriseum and related species. Mycological Research 98: 481–492.

    Article  Google Scholar 

  • Malloch D (1985) Taxonomy of the Trichocomaceae. In: Arai T (ed) Filamentous Microorganisms, Biomedical Aspects (pp. 37–45 ) Japan Scientific Societies Press, Tokyo, Japan.

    Google Scholar 

  • Marasas WFO, Rheeder JP, Lamprecht SC, Zeller KA and Leslie JF (2001) Fusarium andiyazi sp. nov., a new species from sorghum. Mycologia 93: 1203–1210.

    Article  Google Scholar 

  • Martin RR, James D and Lévesque CA (2000) Impacts of molecular diagnostic technologies on plant disease management. Annual Review of Phytopathology 38: 207–239.

    Article  PubMed  CAS  Google Scholar 

  • Miller JD, Greenhalgh R, Wang YZ and Lu M (1991) Trichothecene chemotypes of three Fusarium species. Mycologia 83: 121–130.

    Article  CAS  Google Scholar 

  • Nelson PE, Toussoun TA and Marasas WFO (1983) Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University, University Park, PA, USA.

    Google Scholar 

  • Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW and Joyce D (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiological and Molecular Plant Pathology 53: 17–37.

    Article  CAS  Google Scholar 

  • Niessen ML and Vogel RF (1998) Group specific PCRdetection of potential trichothecene-producing Fusarium species in pure cultures and cereal samples. Systematic and Applied Microbiology 21: 618–631.

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg H (1976) Ubersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft Berlin-Dahlem 169: 1–117.

    Google Scholar 

  • Nirenberg HI and O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia (USA) 90: 434–458.

    Article  Google Scholar 

  • O’Donnell K, Cigelnik E and Nirenberg HI (1998a) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465–493.

    Article  Google Scholar 

  • O’Donnell K, Kistler HC, Cigelink E and Ploetz RC (1998b) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95: 2044–2049.

    Article  Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK and Casper HH (2000a) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences 97: 7905–7910.

    Article  Google Scholar 

  • O’Donnell K, Nirenberg HI, Aoki T and Cigelnik E (2000b) A multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience 41: 61–78.

    Article  Google Scholar 

  • Ouellet T and Seifert KA (1993) Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology 83: 1003–1007.

    Article  CAS  Google Scholar 

  • Parenicova L, Benen JAE, Samson RA and Visser J (1997) Evaluation of RFLP analysis of the classification of selected black aspergilli. Mycological Research 101: 810–814.

    Article  CAS  Google Scholar 

  • Parenicova L, Skouboe P, Frisvad J, Samson RA, Rossen L, ten Hoor-Suykerbuyk M and Visser J (2001) Combined molecular and biochemical approach identifies Aspergillus japonicus and Aspergillus aculeatus as two species. Applied and Environmental Microbiology 67: 521–527.

    Article  PubMed  CAS  Google Scholar 

  • Peterson SW (2000a) Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In: Pitt JI (ed) Integration of Modern Taxonomic Methods for Penicillium and Aspergillus (pp. 163–178 ). Harwood Academic Publishers, Amsterdam, the Netherlands.

    Google Scholar 

  • Peterson SW (2000b) Phylogenetic relationships in Aspergillus based on rDNA sequence analysis. In: Pitt JI (ed). Integration of modern taxonomic methods for Penicillium and Aspergillus (pp. 323–355 ) Harwood Academic Publishers, Amsterdam, the Netherlands.

    Google Scholar 

  • Peterson SW, Ito Y, Horn BW and Goto T (2001) Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia 93: 689–703.

    Article  CAS  Google Scholar 

  • Pitt JI (1979) The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London.

    Google Scholar 

  • Pitt JI, Samson RA and Frisvad JC (2000) List of accepted species and their synonyms in the family Trichocomaceae. In: Pitt JI (ed). Integration of modern taxonomic methods for Penicillium and Aspergillus (pp. 9–49 ) Harwood Academic Publishers, Amsterdam, the Netherlands.

    Google Scholar 

  • Raper KB and Fennell DI (1965) The Genus Aspergillus. Williams and Wilkins, Baltimore, MD, USA.

    Google Scholar 

  • Raper KB and Thom C (1949) A Manual of the Penicillia. Williams and Wilkins, Baltimore, MD, USA.

    Google Scholar 

  • Rheeder JP, Marasas WFO and Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Applied and Environmental Microbiology 68: 2101–2105.

    Article  PubMed  CAS  Google Scholar 

  • Rigo K, Varga J, Toth B, Teren J, Mesterhazy A and Kozakiewicz Z (2002) Evolutionary relationships within Aspergillus section Flavi based on sequences of the intergenic transcribed spacer regions and the 5.8S rRNA gene. Journal of General and Applied Microbiology 48: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Samson RA and Pitt JI (eds) (1985) Advances in Penicillium and Aspergillus Systematics. Plenum Press, New York, USA.

    Google Scholar 

  • Samson RA and Pitt JI (eds) (1990) Modern Concepts in Penicillium and Aspergillus Classification. Plenum Press, New York, USA.

    Google Scholar 

  • Samson RA, Stolk AC and Hadlok R (1976) Revision of the subsection Fasciculata of Penicillium and some allied species. Studies in Mycology 11: 1–47.

    Google Scholar 

  • Samson RA and Pitt JI (eds) (2000) Integration of Modern Methods for Penicillium and Aspergillus, 510 pp. Harwood Academic Publishers, Amsterdam, the Netherlands.

    Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC and Filtenborg O (2000) Introduction to Food and Airborne Fungi, 6th edn. Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands.

    Google Scholar 

  • Schaad NW and Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology 24: 250–258.

    Article  CAS  Google Scholar 

  • Schilling AG, Moller EM and Geiger HH (1996) Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 36: 515–522.

    Article  Google Scholar 

  • Seifert KA and Louis-Seize G (2000). Phylogeny and species concepts in the Penicillium aurantiogriseum complex as inferred from partial beta-tubulin-gene DNA sequences. In: Pitt JI (ed). Integration of modern taxonomic methods for Penicillium and Aspergillus (pp. 189–198 ) Harwood Academic Publishers, Amsterdam, the Netherlands.

    Google Scholar 

  • Seo J-A, Kim J-C and Lee Y-W (1996) Isolation and characterization of two new type C fumonisins produced by Fusarium oxysporum. Journal of Natural Products 59: 1003–1005.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro A and Mullins JT (1997) Localization of cytoplasmic water-soluble reserve (1–3)-beta-glucans in Achlya with immunostaining. Mycologia 89: 89–91.

    Article  CAS  Google Scholar 

  • Shapira R, Paster N, Eyal O, Menasherov M, Mett A and Salomon R (1996) Detection of aflatoxigenic molds in grains by PCR. Applied and Environmental Microbiology 62: 3370–3273.

    Google Scholar 

  • Skouboe P, Frisvad JC, Taylor JW, Lauritsen D, Boysen M and Rossen L (1999) Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological Research 103: 873–881.

    Article  CAS  Google Scholar 

  • Snyder WC, Hansen HN and Oswald JW (1956) Cultivars of the fungus, Fusarium. Journal of Madras University B 27: 185–192.

    Google Scholar 

  • Syndenham EW, Marasas WFO, Thiel PG, Shephard GS and Niewenhuis JJ (1991) Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Food Additives and Contaminants 8: 31–41.

    Article  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Takao K, Geiser DM, Hibbett DS and Fischer MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Varga J, Kevei E, Toth B, Kozakiewicz Z and Hoekstra RF (2000) Molecular analysis of variability within the toxigenic Aspergillus ochraceus species. Canadian Journal of Microbiology 46: 593–599.

    PubMed  CAS  Google Scholar 

  • Varga J, Rigo K, Toth B, Teren J and Kozakiewicz Z (2003) Evolutionary relationships among Aspergillus species producing economically important mycotoxins. Food Technology and Biotechnology 41: 29–36.

    CAS  Google Scholar 

  • Wang L, Yokoyama K, Takahasi H, Kase N, Hanya Y, Yashiro K, Miyaji M and Nishimura K (2001) Identification of species in Aspergillus section Flavi based on sequencing of the mitochondria] cytochrome b gene. International Journal of Food Microbiology 71: 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E and O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences 99: 9278–9283.

    Article  CAS  Google Scholar 

  • Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV and Andersen GL (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Molecular and Cellular Probes 16: 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber HW and Reinking OA (1935) Die Fusarien, ihre Beschreibung, Schadwirkung und Bekämpfung. Paul Parey, Berlin, Germany.

    Google Scholar 

  • Yoder WT and Christianson LM (1998) Species-specific primers resolve members of Fusarium section Fusarium. Fungal Genetics and Biology 23: 68–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Mulè J. A. Bailey B. M. Cooke A. Logrieco

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seifert, K.A., Lévesque, C.A. (2004). Phylogeny and molecular diagnosis of mycotoxigenic fungi. In: Mulè, G., Bailey, J.A., Cooke, B.M., Logrieco, A. (eds) Molecular Diversity and PCR-detection of Toxigenic Fusarium Species and Ochratoxigenic Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2285-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2285-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6631-2

  • Online ISBN: 978-1-4020-2285-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics