Skip to main content

mtDNA Mutations in Brain Aging and Neurodegeneration

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

The cause of the majority of sporadic cases of neurodegenerative disease is unknown. An attractive hypothesis is that accumulation of mitochondrial DNA (mtDNA) mutations may contribute to the cell loss observed in these diseases. Here we describe some of the data surrounding mtDNA mutations in mitochondrial disease where the most severe symptoms are due to neurodegeneration. We also describe mtDNA mutations in aging and common neurodegenerative disorders with a focus on the consequences of mtDNA mutations and the possible contribution to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem. 2008;283:3665–75.

    Article  PubMed  CAS  Google Scholar 

  2. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389–402.

    Article  PubMed  CAS  Google Scholar 

  3. Diaz F, Bayona-Bafaluy MP, Rana M, et al. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. Nucleic Acids Res. 2002;30(21):4626–33.

    Article  PubMed  CAS  Google Scholar 

  4. Fukui H, Moraes CT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet. 2009;18(6):1028–36.

    Article  PubMed  CAS  Google Scholar 

  5. Elson JL, Samuels DC, Turnbull DM, et al. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet. 2001;68:802–6.

    Article  PubMed  CAS  Google Scholar 

  6. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol. 2008;63(1):35–9.

    Article  PubMed  CAS  Google Scholar 

  7. Rotig A, Cormier V, Blanche S, et al. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest. 1990;86(5):1601–8.

    Article  PubMed  CAS  Google Scholar 

  8. Maceluch JA, Niedziela M. The clinical diagnosis and molecular genetics of kearns-sayre syndrome: a complex mitochondrial encephalomyopathy. Pediatr Endocrinol Rev. 2006;4(2):117–37.

    PubMed  Google Scholar 

  9. Hudson G, Chinnery PF. Mitochondrial DNA polymerase-gamma and human disease. Hum Mol Genet. 2006;15(Spec No 2):R244–52.

    Article  PubMed  CAS  Google Scholar 

  10. Kaukonen J, Juselius JK, Tiranti V, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000;289(5480):782–5.

    Article  PubMed  CAS  Google Scholar 

  11. Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001;28(3):223–31.

    Article  PubMed  CAS  Google Scholar 

  12. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.

    Article  PubMed  CAS  Google Scholar 

  13. Corral-Debrinski M, Horton T, Lott MT, et al. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet. 1992;2(4):324–9.

    Article  PubMed  CAS  Google Scholar 

  14. Cortopassi GA, Shibata D, Soong NW, et al. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA. 1992;89(16):7370–4.

    Article  PubMed  CAS  Google Scholar 

  15. Brierley EJ, Johnson MA, Lightowlers RN, et al. Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol. 1998;43(2):217–23.

    Article  PubMed  CAS  Google Scholar 

  16. Zeviani M, Moraes CT, DiMauro S, et al. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology. 1988;38(9):1339–46.

    Article  PubMed  CAS  Google Scholar 

  17. Barreau E, Brossas JY, Courtois Y, et al. Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci. 1996;37(2):384–91.

    PubMed  CAS  Google Scholar 

  18. Cooper JM, Mann VM, Schapira AH. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci. 1992;113(1):91–8.

    Article  PubMed  CAS  Google Scholar 

  19. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990;18(23):6927–33.

    Article  PubMed  CAS  Google Scholar 

  20. Kao S, Chao HT, Wei YH. Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 1995;52(4):729–36.

    Article  PubMed  CAS  Google Scholar 

  21. Kitagawa T, Suganuma N, Nawa A, et al. Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries. Biol Reprod. 1993;49(4):730–6.

    Article  PubMed  CAS  Google Scholar 

  22. Pang CY, Lee HC, Yang JH, et al. Human skin mitochondrial DNA deletions associated with light exposure. Arch Biochem Biophys. 1994;312(2):534–8.

    Article  PubMed  CAS  Google Scholar 

  23. Simonetti S, Chen X, DiMauro S, et al. Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta. 1992;1180(2):113–22.

    Article  PubMed  CAS  Google Scholar 

  24. Bua E, Johnson J, Herbst A, et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79(3):469–80.

    Article  PubMed  CAS  Google Scholar 

  25. Kraytsberg Y, Kudryavtseva E, McKee AC, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang C, Linnane AW, Nagley P. Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun. 1993;195(2):1104–10.

    Article  PubMed  CAS  Google Scholar 

  27. Munscher C, Rieger T, Muller-Hocker J, et al. The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages. FEBS Lett. 1993;317(1–2):27–30.

    Article  PubMed  CAS  Google Scholar 

  28. Michikawa Y, Mazzucchelli F, Bresolin N, et al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286(5440):774–9.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Michikawa Y, Mallidis C, et al. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA. 2001;98(7):4022–7.

    Article  PubMed  CAS  Google Scholar 

  30. Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci USA. 2004;101(29):10726–31.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor RW, Barron MJ, Borthwick GM, et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 2003;112(9):1351–60.

    PubMed  CAS  Google Scholar 

  32. McDonald SA, Preston SL, Greaves LC, et al. Clonal expansion in the human gut: mitochondrial DNA mutations show us the way. Cell Cycle. 2006;5(8):808–11.

    Article  PubMed  CAS  Google Scholar 

  33. McDonald SA, Greaves LC, Gutierrez-Gonzalez L, et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology. 2008;134(2):500–10.

    Article  PubMed  CAS  Google Scholar 

  34. Fellous TG, Islam S, Tadrous PJ, et al. Locating the stem cell niche and tracing hepatocyte lineages in human liver. Hepatology. 2009;49(5):1655–63.

    Article  PubMed  CAS  Google Scholar 

  35. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–4.

    Article  PubMed  CAS  Google Scholar 

  36. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23.

    Article  PubMed  CAS  Google Scholar 

  37. Langston JW, Ballard P, Tetrud JW, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–80.

    Article  PubMed  CAS  Google Scholar 

  38. Burns RS, Chiueh CC, Markey SP, et al. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA. 1983;80(14):4546–50.

    Article  PubMed  CAS  Google Scholar 

  39. Gai WP, Yuan HX, Li XQ, et al. In situ and in vitro study of colocalization and segregation of alpha-synuclein, ubiquitin, and lipids in Lewy bodies. Exp Neurol. 2000;166(2):324–33.

    Article  PubMed  CAS  Google Scholar 

  40. Roy S, Wolman L. Ultrastructural observations in Parkinsonism. J Pathol. 1969;99(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  41. Song DD, Shults CW, Sisk A, et al. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol. 2004;186(2):158–72.

    Article  PubMed  CAS  Google Scholar 

  42. Dauer W, Kholodilov N, Vila M, et al. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA. 2002;99(22):14524–9.

    Article  PubMed  CAS  Google Scholar 

  43. Stichel CC, Zhu XR, Bader V, et al. Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Hum Mol Genet. 2007;16(20):2377–93.

    Article  PubMed  CAS  Google Scholar 

  44. Parihar MS, Parihar A, Fujita M, et al. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol. 2009;41(10):2015–24.

    Article  PubMed  CAS  Google Scholar 

  45. Devi L, Anandatheerthavarada HK. Mitochondrial trafficking of APP and alpha synuclein: relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochim Biophys Acta. 2010;1802(1):11–9.

    Article  PubMed  CAS  Google Scholar 

  46. Kamp F, Exner N, Lutz AK, et al. Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 2010;29(20):3571–89.

    Article  PubMed  CAS  Google Scholar 

  47. Bindoff LA, Birch-Machin M, Cartlidge NE, et al. Mitochondrial function in Parkinson’s disease. Lancet. 1989;2(8653):49.

    Article  PubMed  CAS  Google Scholar 

  48. Gu M, Owen AD, Toffa SE, et al. Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci. 1998;158(1):24–9.

    Article  PubMed  CAS  Google Scholar 

  49. Janetzky B, Hauck S, Youdim MB, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett. 1994;169(1–2):126–8.

    Article  PubMed  CAS  Google Scholar 

  50. Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1989;1(8649):1269.

    Article  PubMed  CAS  Google Scholar 

  51. Parker Jr WD, Parks JK. Mitochondrial ND5 mutations in idiopathic Parkinson’s disease. Biochem Biophys Res Commun. 2005;326(3):667–9.

    Article  PubMed  CAS  Google Scholar 

  52. Smigrodzki R, Parks J, Parker WD. High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging. 2004;25(10):1273–81.

    Article  PubMed  CAS  Google Scholar 

  53. Bender A, Schwarzkopf RM, McMillan A, et al. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol. 2008;255(8):1231–5.

    Article  PubMed  Google Scholar 

  54. Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study. Lancet. 2004;364(9437):875–82.

    Article  PubMed  CAS  Google Scholar 

  55. Betts-Henderson J, Jaros E, Krishnan KJ, et al. Alpha-synuclein pathology and Parkinsonism associated with POLG1 mutations and multiple mitochondrial DNA deletions. Neuropathol Appl Neurobiol. 2009;35(1):120–4.

    Article  PubMed  CAS  Google Scholar 

  56. Tiangyou W, Hudson G, Ghezzi D, et al. POLG1 in idiopathic Parkinson disease. Neurology. 2006;67(9):1698–700.

    Article  PubMed  CAS  Google Scholar 

  57. Hudson G, Schaefer AM, Taylor RW, et al. Mutation of the linker region of the polymerase gamma-1 (POLG1) gene associated with progressive external ophthalmoplegia and Parkinsonism. Arch Neurol. 2007;64(4):553–7.

    Article  PubMed  Google Scholar 

  58. Davidzon G, Greene P, Mancuso M, et al. Early-onset familial parkinsonism due to POLG mutations. Ann Neurol. 2006;59(5):859–62.

    Article  PubMed  CAS  Google Scholar 

  59. Mancuso M, Filosto M, Oh SJ, et al. A novel polymerase gamma mutation in a family with ophthalmoplegia, neuropathy, and Parkinsonism. Arch Neurol. 2004;61(11):1777–9.

    Article  PubMed  Google Scholar 

  60. Trimmer PA, Borland MK, Keeney PM, et al. Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem. 2004;88(4):800–12.

    Article  PubMed  CAS  Google Scholar 

  61. Aomi Y, Chen CS, Nakada K, et al. Cytoplasmic transfer of platelet mtDNA from elderly patients with Parkinson’s disease to mtDNA-less HeLa cells restores complete mitochondrial respiratory function. Biochem Biophys Res Commun. 2001;280(1):265–73.

    Article  PubMed  CAS  Google Scholar 

  62. Ito S, Ohta S, Nishimaki K, et al. Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer’s disease. Proc Natl Acad Sci USA. 1999;96(5):2099–103.

    Article  PubMed  CAS  Google Scholar 

  63. Kish SJ, Bergeron C, Rajput A, et al. Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem. 1992;59(2):776–9.

    Article  PubMed  CAS  Google Scholar 

  64. Parker Jr WD, Parks J, Filley CM, et al. Electron transport chain defects in Alzheimer’s disease brain. Neurology. 1994;44(6):1090–6.

    Article  PubMed  Google Scholar 

  65. Cottrell DA, Blakely EL, Johnson MA, et al. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology. 2001;57(2):260–4.

    Article  PubMed  CAS  Google Scholar 

  66. Swerdlow RH, Parks JK, Cassarino DS, et al. Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology. 1997;49(4):918–25.

    Article  PubMed  CAS  Google Scholar 

  67. Chinnery PF, Taylor GA, Howell N, et al. Point mutations of the mtDNA control region in normal and neurodegenerative human brains. Am J Hum Genet. 2001;68(2):529–32.

    Article  PubMed  CAS  Google Scholar 

  68. Chagnon P, Gee M, Filion M, et al. Phylogenetic analysis of the mitochondrial genome indicates significant differences between patients with Alzheimer disease and controls in a French-Canadian founder population. Am J Med Genet. 1999;85(1):20–30.

    Article  PubMed  CAS  Google Scholar 

  69. Schaefer AM, Phoenix C, Elson JL, et al. Mitochondrial disease in adults: a scale to monitor progression and treatment. Neurology. 2006;66(12):1932–4.

    Article  PubMed  CAS  Google Scholar 

  70. Devi L, Prabhu BM, Galati DF, et al. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057–68.

    Article  PubMed  CAS  Google Scholar 

  71. Melberg A, Nennesmo I, Moslemi AR, et al. Alzheimer pathology associated with POLG1 mutation, multiple mtDNA deletions, and APOE4/4: premature ageing or just coincidence? Acta Neuropathol (Berl). 2005;110(3):315–6.

    Article  Google Scholar 

  72. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.

    Article  PubMed  CAS  Google Scholar 

  73. Sasaki S, Iwata M. Ultrastructural study of synapses in the anterior horn neurons of patients with amyotrophic lateral sclerosis. Neurosci Lett. 1996;204(1–2):53–6.

    Article  PubMed  CAS  Google Scholar 

  74. Borthwick GM, Johnson MA, Ince PG, et al. Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death. Ann Neurol. 1999;46(5):787–90.

    Article  PubMed  CAS  Google Scholar 

  75. Vielhaber S, Kunz D, Winkler K, et al. Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain. 2000;123(Pt 7):1339–48.

    Article  PubMed  Google Scholar 

  76. Keeney PM, Bennett Jr JP. ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions. Mol Neurodegener. 2010;5(21):21.

    Article  PubMed  Google Scholar 

  77. Hardie DG. AMPK and SNF1: snuffing out stress. Cell Metab. 2007;6(5):339–40.

    Article  PubMed  CAS  Google Scholar 

  78. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94.

    Article  PubMed  CAS  Google Scholar 

  79. Suen DF, Narendra DP, Tanaka A, et al. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci USA. 2010;107(26):11835–40.

    Article  PubMed  CAS  Google Scholar 

  80. Aure K, Fayet G, Leroy JP, et al. Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation. Brain. 2006;129(Pt 5):1249–59.

    Article  PubMed  Google Scholar 

  81. Trevelyan AJ, Kirby DM, Smulders-Srinivasan TK, et al. Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain. 2010;133(Pt 3):787–96.

    Article  PubMed  Google Scholar 

  82. Abramov AY, Smulders-Srinivasan TK, Kirby DM, et al. Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain. 2010;133(Pt 3):797–807.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Jennifer Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Krishnan, K.J., Reeve, A.K. (2012). mtDNA Mutations in Brain Aging and Neurodegeneration. In: Reeve, A., Krishnan, K., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, London. https://doi.org/10.1007/978-0-85729-701-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-701-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-700-6

  • Online ISBN: 978-0-85729-701-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics