Skip to main content

Inner-Loop Flight Control

  • Chapter
Book cover Unmanned Rotorcraft Systems

Part of the book series: Advances in Industrial Control ((AIC))

  • 4155 Accesses

Abstract

We propose a three-layer automatic flight control system for our unmanned vehicles based on the time scales of the state variables of the helicopter, which consists of the inner loop, the outer loop, and the flight scheduling layers. The inner loop stabilizes the dynamics of the helicopter associated with its angular velocities and Euler angles. The outer loop controls the position of the unmanned system. Lastly, the outmost layer, i.e., the flight scheduling layer, generates the necessary trajectories for predefined flight missions. Chapter 7 presents the design of the inner-loop control law using an H-infinity control technique based on the linearized model obtained in Chap. 6. More specifically, we focus on issues related to design specification selection, problem formulation, flight control law design, and overall performance evaluation. Design specifications for military rotorcraft set for US army aviation are adopted throughout the whole process to guarantee a top level performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ADS-33D-PRF. Aeronautical design standard performance specification handling qualities requirements for military rotorcraft. U.S. Army Aviation and Troop Command; 1996.

    Google Scholar 

  2. Başar T, Bernhard P. H optimal control and related minimax design problems: a dynamic game approach. 2nd ed. Boston: Birkhäuser; 1995.

    MATH  Google Scholar 

  3. Chen BM. Robust and H control. New York: Springer; 2000.

    MATH  Google Scholar 

  4. CONDUIT user’s guide [report]. US NASA Ames Research Center, Moffett Field; 2009.

    Google Scholar 

  5. Doyle JC. Lecture notes in advances in multivariable control. ONR-Honeywell Workshop; 1984.

    Google Scholar 

  6. Doyle J, Glover K, Khargonekar PP, Francis BA. State-space solutions to standard H 2 and H control problems. IEEE Trans Autom Control. 1989;34:831–47.

    Article  MathSciNet  MATH  Google Scholar 

  7. Enns R, Si J. Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Trans Neural Netw. 2003;14:929–39.

    Article  Google Scholar 

  8. Francis BA. A course in H control theory. Berlin: Springer; 1987.

    Book  MATH  Google Scholar 

  9. Frost W, Turner RE. A discrete gust model for use in the design of wind energy conversion systems. J Appl Meteorol. 1982;21:770C–776C.

    Article  Google Scholar 

  10. Fujiwara D, Shin J, Hazawa K, Nonami K. H hovering and guidance control for autonomous small-scale unmanned helicopter. In: Proc IEEE/RSJ int conf intell robot syst, Sendai, Japan; 2004. p. 2463–8.

    Google Scholar 

  11. Gadewadikar J, Lewis FL, Subbarao K, Chen BM. Structured H command and control loop design for unmanned helicopters. J Guid Control Dyn. 2008;31:1093–102.

    Article  Google Scholar 

  12. Glover K. All optimal Hankel-norm approximations of linear multivariable systems and their \(\mathcal{L}_{\infty}\) error bounds. Int J Control. 1984;39:1115–93.

    Article  MathSciNet  MATH  Google Scholar 

  13. Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Trans Autom Control. 2003;48:413–26.

    Article  MathSciNet  Google Scholar 

  14. Kimura H. Chain-scattering approach to H -control. Boston: Birkhäuser; 1997.

    Book  Google Scholar 

  15. Kwakernaak H. A polynomial approach to minimax frequency domain optimization of multivariable feedback systems. Int J Control. 1986;41:117–56.

    Article  MathSciNet  Google Scholar 

  16. Limebeer DJN, Anderson BDO. An interpolation theory approach to H controller degree bounds. Linear Algebra Appl. 1988;98:347–86.

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng K, Cai G, Chen BM, Dong M, Lum KY, Lee TH. Design and implementation of an autonomous flight control law for a UAV helicopter. Automatica. 2009;45:2333–8.

    Article  MathSciNet  MATH  Google Scholar 

  18. SAE-AS94900. General specification for aerospace flight control systems design, installation and test of piloted military aircraft. Warrendale, SAE International; 2007.

    Google Scholar 

  19. Shim DH, Kim HJ, Sastry S. Decentralized nonlinear model predictive control of multiple flying robots. In: Proc 42nd IEEE conf dec contr, Maui, HI; 2003. p. 3621–6.

    Google Scholar 

  20. Tischler MB, Colbourne JD, Morel MR, Biezad DJ. A multidisciplinary flight control development environment and its application to a helicopter. IEEE Control Syst Mag. 1999;19:22–33.

    Article  Google Scholar 

  21. Tischler MB, Colbourne JD, Morel MR, et al. CONDUIT—a new multidisciplinary integration environment for flight control development. Presented at AIAA guid, nav, contr conf, New Orleans, LA; 1997. AIAA-1997-3773.

    Google Scholar 

  22. Weilenmann MW, Christen U, Geering HP. Robust helicopter position control at hover. In: Proc American contr conf, Baltimore, MD; 1994; p. 2491–5.

    Google Scholar 

  23. Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans Autom Control. 1981;26:301–20.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhou K, Doyle J, Glover K. Robust and optimal control. Englewood Cliffs: Prentice Hall; 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cai, G., Chen, B.M., Lee, T.H. (2011). Inner-Loop Flight Control. In: Unmanned Rotorcraft Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-635-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-635-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-634-4

  • Online ISBN: 978-0-85729-635-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics