Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

In this monograph, the authors aim to explore the research and development of fully functional miniature unmanned-aerial-vehicle (UAV) rotorcraft, which consist of a small-scale basic rotorcraft with all necessary accessories onboard and a ground station. The unmanned system is an integration of advanced technologies developed in the communications, computing, and control areas. It is an excellent test bed for testing and implementing modern control techniques. It is, however, a highly challenging process. The flight dynamics of small-scale rotorcraft such as a hobby helicopter is similar to its full-scale counterpart but owns some unique characteristics such as the utilization of a stabilizer bar, higher rotor stiffness, and yaw rate feedback control. Besides these, the strict limitation on payload also increases the difficulty in upgrading a small-scale rotorcraft to a UAV with full capacities. Based on its various characteristics and limitations, a lightweight but effective onboard avionic system with corresponding onboard/ground software should be carefully designed to realize the system identification and automatic flight requirements. These issues will be addressed in detail in this monograph. Research on utilizing the vision-based system for accomplishing ground target tracking and following, cooperative control, and flight formation of multiple unmanned rotorcraft is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ADS-33D-PRF. Aeronautical design standard performance specification handling qualities requirements for military rotorcraft. U.S. Army Aviation and Troop Command; 1996.

    Google Scholar 

  2. AF25B helicopter. http://www.copterworks.com/. Cited Aug 2010.

  3. Aladin UAV system. http://www.emt-penzberg.de/. Cited Aug 2010.

  4. AutoCopter express UAV. http://www.autocopter.net/. Cited Aug 2010.

  5. Berkeley aerobot team. http://robotics.eecs.berkeley.edu/bear/testbeds.html. Cited Aug 2010.

  6. Bogdanov A, Wan E. SDRE control with nonlinear feed forward compensation for a small unmanned helicopter. In: Proc 2nd AIAA unmanned unlimited syst, technol, operations conf, San Diego, CA; 2003. AIAA-2003-6512.

    Google Scholar 

  7. Bramwell ARS. Bramwell’s helicopter dynamics. Reston: AIAA; 2001.

    Google Scholar 

  8. Cai G, Cai AK, Chen BM, Lee TH. Construction, modeling and control of a mini autonomous UAV helicopter. In: Proc IEEE int conf automat logistics, Qingdao, China; 2008. p. 449–54.

    Google Scholar 

  9. Cai G, Chen BM, Lee TH, Dong M. Design and implementation of a hardware-in-the-loop simulation system for small-scale UAV helicopters. Mechatronics. 2009;19:1057–66.

    Article  Google Scholar 

  10. Cai G, Chen BM, Lee TH, Lum KY. Comprehensive nonlinear modeling of an unmanned aerial vehicle helicopter. In: Proc 2008 AIAA guidance, navigation and contr conf, Honolulu, HI; 2008. AIAA-2008-7414.

    Google Scholar 

  11. Cai G, Chen BM, Peng K, Dong M, Lee TH. Modeling and control system design for a UAV helicopter. In: Proc 14th mediterranean conf contr automat, Ancona, Italy; 2006. p. 600–6.

    Google Scholar 

  12. Cai G, Chen BM, Dong X, Lee TH. Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter. Mechatron. 2011. doi:10.1016/j.mechatronics.2011.02.002.

  13. Cai G, Chen BM, Lee TH. An overview on development of miniature unmanned rotorcraft systems. Front Electr Electron Eng China. 2010;5:1–14.

    Article  Google Scholar 

  14. Cai G, Lin F, Chen BM, Lee TH. Systematic design methodology and construction of UAV helicopters. Mechatronics. 2008;18:545–58.

    Article  Google Scholar 

  15. Cai G, Peng K, Chen BM, Lee TH. Design and assembling of a UAV helicopter system. In: Proc 5th int conf contr automat, Budapest, Hungary; 2005. p. 697–702.

    Google Scholar 

  16. Camcopter S-100 UAV system. http://www.schiebel.net/. Cited Aug 2010.

  17. Charles J. CMU’s autonomous helicopter explores new territory. IEEE Intell Syst. 1998;13:85–7.

    Article  Google Scholar 

  18. Cheng RP, Tischler MB, Schulein GJ. Rmax helicopter state-space model identification for hover and forward-flight. J Am Helicopter Soc. 2006;51:202–10.

    Article  Google Scholar 

  19. Circular Error Probable (CEP). Technical paper 6 [report]. USA: Air Force Operational Test and Evaluation Center; 1987.

    Google Scholar 

  20. Civita ML, Messner W, Kanade T. Modeling of small-scale helicopters with integrated first-principles and integrated system identification techniques. Presented at 58th forum of American helicopter society, Montreal, Canada; 2002.

    Google Scholar 

  21. Conway A. Autonomous control of an unstable helicopter using carrier phase GPS only [PhD dissertation]. Stanford University; 1994.

    Google Scholar 

  22. Corban JE, Calise AJ, Prasad JVR. Implementation of adaptive nonlinear controller for flight test on an unmanned helicopter. In: Proc 37th IEEE conf dec contr, Tampa, FL; 1998. p. 3641–6.

    Google Scholar 

  23. Delfly MAVs. http://www.delfly.nl/. Cited Aug 2010.

  24. Dong M, Chen BM, Cheng C. Development of 3D monitoring for an unmanned aerial vehicle. In: Proc 1st int conf computer science edu, Xiamen, China; 2006. p. 135–40.

    Google Scholar 

  25. Dong M, Chen BM, Cai G, Peng K. Development of a real-time onboard and ground station software system for a UAV helicopter. J Aerosp Comput Inf Commun. 2007;4:933–55.

    Article  Google Scholar 

  26. Dong X, Chen BM, Cai G, Lin H, Lee TH. A comprehensive real-time software system for flight coordination and cooperative control of multiple unmanned aerial vehicles. Int J Robot Automat. 2011;26:49–63.

    Google Scholar 

  27. Draganflyer X4 quadrotor helicopter. http://www.draganfly.com/. Cited Aug 2010.

  28. Enns R, Si J. Helicopter flight control design using a learning control approach. In: Proc 39th IEEE conf dec contr, Sydney, Australia; 2000. p. 1754–9.

    Google Scholar 

  29. Enns R, Si J. Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Trans Neural Netw. 2003;14:929–39.

    Article  Google Scholar 

  30. ETH unmanned helicopters. http://www.uav.ethz.ch/. Cited Aug 2010.

  31. Fancopter UAV systems. http://www.emt-penzberg.de/. Cited Aug 2010.

  32. FH series miniature coaxial UAVs. http://www.ase.buaa.edu.cn/chenming/fh1.html. Cited Aug 2010.

  33. Flight video gallery. http://www.model-helicopters.com/. Cited Aug 2010.

  34. Flight video gallery. http://www.rcgroups.com/rc-video-gallery-271/. Cited Aug 2010.

  35. Flight video gallery. http://www.runryder.com/helicopter/galleries/. Cited Aug 2010.

  36. Flying-cam helicopter. http://www.flying-cam.com/. Cited Aug 2010.

  37. Gadewadikar J, Lewis FL, Subbarao K, Chen BM. Structured H ∞ command and control loop design for unmanned helicopters. J Guid Control Dyn. 2008;31:1093–102.

    Article  Google Scholar 

  38. Gavrilets V, Mettler B, Feron E. Nonlinear model for a small-size acrobatic helicopter. Presented at AIAA guidance, navigation, and contr conf, Montreal, Canada; 2001.

    Google Scholar 

  39. Gavrilets V, Martinos I, Mettler B, Feron E. Aggressive manuevering of small autonomous helicopters: a human-centered approach. Int J Robot Res. 2001;20:795–807.

    Article  Google Scholar 

  40. HighEye UAV helicopter. http://www.higheye.nl/. Cited Aug 2010.

  41. Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter. IEEE Trans Autom Control. 2003;48:413–26.

    Article  MathSciNet  Google Scholar 

  42. Johnson EN, Schrage DP. The Georgia Tech unmanned aerial research vehicle: GTmax. In: Proc 2003 AIAA guidance, navigation, contr conf, Austin, TX; 2003. AIAA-2003-5741.

    Google Scholar 

  43. Johnson W. Helicopter theory. Mineola: Dover Publications; 1994.

    Google Scholar 

  44. Kadmiry B. Fuzzy control for an autonomous helicopter [thesis]. Linkoping University, Sweden; 2002.

    Google Scholar 

  45. KillerBee blended-wing UAV systems. http://www.raytheon.com. Cited Aug 2010.

  46. Koo TJ, Sastry S. Output tracking control design of a helicopter model based on approximate linearization. In: Proc 37th IEEE conf dec contr, Tampa, FL; 1998. p. 3635–40.

    Google Scholar 

  47. Lama V4 coaxial helicopter. http://en.esky-sz.cn/home.html. Cited Aug 2010.

  48. Malazgirt mini unmanned helicopter system. http://www.baykarmakina.com/heliuav. Cited Aug 2010.

  49. MARVIN Mark Series UAV helicopters. http://pdv.cs.tu-berlin.de/MARVIN/. Cited Aug 2010.

  50. MAVstar. http://www.robotics.unsw.edu.au/mavstar/. Cited Aug 2010.

  51. Mejias LO, Saripalli S, Cervera P, Sukhatme GS. Visual servoing of an autonomous helicopter in urban areas using feature tracking. J Field Robot. 2006;23:185–99.

    Article  Google Scholar 

  52. Mettler BM. Identification, modeling and characteristics of miniature rotorcraft. Boston: Kluwer Academic Publishers; 2002.

    Google Scholar 

  53. Mettler BM, Tischler MB, Kanade T. System identification modeling of a small-scale unmanned rotorcraft for control design. J Am Helicopter Soc. 2002;47:50–63.

    Article  Google Scholar 

  54. Mettler BM, Tischler MB, Kanade T. System identification of small-size unmanned helicopter dynamics. Presented at 55th forum American helicopter society; 1999.

    Google Scholar 

  55. Miami police department. http://www.nwotruth.com/miami-police-plans-urban-test-of-honeywells-micro-uav/. Cited Aug 2010.

  56. Micro flying robot. http://global.epson.com/. Cited Aug 2010.

  57. Morris JC, Nieuwstadt M, Bendotti P. Identification and control of a model helicopter in hover. In: Proc American contr conf, Baltimore, MD; 1994. p. 1238–42.

    Google Scholar 

  58. MuFly autonomous micro helicopter. http://www.mufly.ethz.ch/index. Cited Aug 2010.

  59. Musial M, Brandenburg UW, Hommel G. Inexpensive system design: the flying robot MARVIN. In: Proc 16th int UAVs conf unmanned air veh syst, Bristol, UK; 2001. p. 23.1–23.12.

    Google Scholar 

  60. Naval rotary UAV. http://www.iai.co.il/. Cited Aug 2010.

  61. Nickol C, Guynn M, Kohout L, Ozoroski T. High altitude long endurance air vehicle analysis of alternatives and technology requirements development. In: Proc 45th AIAA aerospace sciences meeting and exhibit, Reno, NV; 2007. AIAA-2007-1050.

    Google Scholar 

  62. NRL Dragon Warrior UAV. http://www.designation-systems.net/dusrm/app4/vantage.html. Cited Aug 2010.

  63. NUS UAV research. http://uav.ece.nus.edu.sg. Cited Aug 2010.

  64. OAV iStar. http://defense-update.com/features/du-2-04/mav-oav.htm. Cited Aug 2010.

  65. Observer-twin helicopter. http://www.bergenrc.com/. Cited Aug 2010.

  66. Padfield GD. Helicopter flight dynamics: the theory and application of flying qualities and simulation modeling. Reston: AIAA Press; 1996.

    Google Scholar 

  67. PC/104 embedded consortium. http://www.pc104.org. Cited Aug 2010.

  68. Peng K, Cai G, Chen BM, Dong M, Lum KY, Lee TH. Design and implementation of an autonomous flight control law for a UAV helicopter. Automatica. 2009;45:2333–8.

    Article  MathSciNet  MATH  Google Scholar 

  69. Phang SK, Ong JJ, Yeo RTC, Chen BM, Lee TH. Autonomous mini-UAV for indoor flight with embedded on-board vision processing as navigation system. In: Proc IEEE R8 int conf computational technologies electrical electronics engineering, Irkutsk, Russia; 2010. p. 722–7.

    Google Scholar 

  70. Pixhawk. http://pixhawk.ethz.ch/. Cited Aug 2010.

  71. QNX neutrio RTOS. http://www.qnx.com/. Cited Aug 2010.

  72. Raptor 90 SE helicopter. http://www.tiger.com.tw/. Cited Aug 2010.

  73. RT Linux RTOS. http://www.rtlinuxfree.com/. Cited Aug 2010.

  74. Schiebel camcopter. http://www.schiebel.net/. Cited Aug 2010.

  75. Shim DH, Kim HJ, Sastry S. Control system design for rotorcraft-based unmanned aerial vehicle using time-domain system identification. In: Proc IEEE conf contr appl, Anchorage, AK; 2000. p. 808–13.

    Google Scholar 

  76. Shim DH, Kim HJ, Sastry S. Decentralized nonlinear model predictive control of multiple flying robots. In: Proc 42nd IEEE conf dec contr, Maui, HI; 2003. p. 3621–6.

    Google Scholar 

  77. Sikorsky Cypher UAVs. http://en.wikipedia.org/wiki/Sikorsky_Cypher. Cited Aug 2010.

  78. Skeldar V-150 VTOL UAV. http://www.saabgroup.com/en/Air/Airborne-Solutions/. Cited Aug 2010.

  79. Sky Surveyor UAV helicopters. http://me2.tm.chiba-u.jp/uav/main/. Cited Aug 2010.

  80. SR Series VTOL UAV helicopters. http://www.rotomotion.com/. Cited Aug 2010.

  81. Stevens BL, Lewis FL. Aircraft control and simulation. 2nd ed. Hoboken: Wiley; 2003.

    Google Scholar 

  82. Sugeno M, Hirano I, Nakamura S, Kotsu S. Development of an intelligent unmanned helicopter. In: Proc 1995 IEEE int conf fuzzy syst, Yokohama, Japan; 1995. p. 33–4.

    Chapter  Google Scholar 

  83. Tischler MB, Remple RK. Aircraft and rotorcraft system identification: engineering methods with flight test examples. Reston: AIAA Press; 2006.

    Google Scholar 

  84. TREX 450 helicopter. http://www.align.com.tw/alignhtml/EN/index.html. Cited Aug 2010.

  85. Turbulence D3 helicopter. http://model.hirobo.co.jp/english/index.html. Cited Aug 2010.

  86. UAV sWARM health management project. http://vertol.mit.edu/. Cited Aug 2010.

  87. Understanding flybar mixing. http://rchelimag.com/pages/howto.php?howto=22. Cited Aug 2010.

  88. USC autonomous flying vehicle project. http://robotics.usc.edu/avatar/. Cited Aug 2010.

  89. Valavanis KP, editor. Advances in unmanned aerial vehicles. New York: Springer; 2007.

    MATH  Google Scholar 

  90. Vicacopter. http://www.vicacopter.com/. Cited Aug 2010.

  91. Visual C++ developer center. http://msdn.microsoft.com/en-us/visualc/default.aspx. Cited Aug 2010.

  92. VxWorks RTOS. http://www.windriver.com/products/vxworks/. Cited Aug 2010.

  93. Wan EA, Bogdanov AA. Model predictive neural control with applications to a 6 DoF helicopter model. In: Proc 2001 American contr conf, Arlington, VA; 2001. p. 488–93.

    Google Scholar 

  94. Wang T. Development of a micro unmanned vertical take-off and landing rotorcraft [thesis]. National University of Singapore; 2009.

    Google Scholar 

  95. WASP III UAV systems. http://www.aerovironment.com/uas_product. Cited Aug 2010.

  96. Weilenmann MW, Christen U, Geering HP. Robust helicopter position control at hover. In: Proc American contr conf, Baltimore, MD; 1994; p. 2491–5.

    Google Scholar 

  97. Weilenmann MW, Geering HP. Test bench for rotorcraft hover control. J Guid Control Dyn. 1994;17:729–36.

    Article  Google Scholar 

  98. Wikipedia. Compass. http://en.wikipedia.org/wiki/Compass. Cited Aug 2010.

  99. Wikipedia. Global positioning system. http://en.wikipedia.org/wiki/GPS. Cited Aug 2010.

  100. Wikipedia. Inertial measurement unit. http://en.wikipedia.org/wiki/Inertial_measurement_unit. Cited Aug 2010.

  101. Wikipedia. International aerial robotics competition. http://en.wikipedia.org/wiki/Interna-tional_Aerial_Robotics_Competition. Cited Aug 2010.

  102. Wikipedia. Miniature UAV. http://en.wikipedia.org/wiki/Miniature_UAVs. Cited Aug 2010.

  103. Wikipedia. PC/104 standard. http://en.wikipedia.org/wiki/PC104. Cited Aug 2010.

  104. Wikipedia. Real-time operating system. http://en.wikipedia.org/wiki/Real-time_operating_system. Cited Aug 2010.

  105. WITAS UAV project. http://www.ida.liu.se/~patdo/auttek/introduction/. Cited Aug 2010.

  106. Wood RJ. The first takeoff of a biologically-inspired at-scale robotic insect. IEEE Trans Robot. 2008;24:341–7.

    Article  Google Scholar 

  107. Yamaha Rmax unmanned helicopter. http://www.yamaha-motor.co.jp/global/. Cited Aug 2010.

  108. Yamaha-R50-based UAV helicopters. http://www.cs.cmu.edu/afs/cs/project/chopper/www/. Cited Aug 2010.

  109. ZALA 421-02 unmanned helicopter. http://zala.aero/en/uav/1205400770.htm. Cited Aug 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cai, G., Chen, B.M., Lee, T.H. (2011). Introduction. In: Unmanned Rotorcraft Systems. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-0-85729-635-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-635-1_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-634-4

  • Online ISBN: 978-0-85729-635-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics