Skip to main content

Multiresolution and Wavelets

  • Chapter
  • 1556 Accesses

Abstract

Time domain and frequency domain analysis suffer the drawback of a scarce resolution, in frequency and in time, respectively. In several applications a segmented resolution (multiresolution) is required, where relevant parts of the signal are detailed, and other parts are only roughly represented. The modern technique that achieves this goal is provided by wavelets that are the target of this chapter. Wavelets are strongly related to the topics developed in the previous chapter, since they can be effectively formulated in the framework of generalized transforms (wavelet transform) and their practical implementation is by means of filter banks. In the final part of the chapter, multiresolution analysis is illustrated with examples of applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the notation \(\varphi_{u}^{(m)}(t)\) the subscript m gives the resolution, and u the shift amount with respect to ϕ (m)(t). In the literature the notation \(\varphi_{n}^{(m)}(t)\), or ϕ mn (t), is used to denote a shifted version of n2m with respect \(\varphi_{0}^{(m)}(t)\).

  2. 2.

    We recall that in our theory “symmetry” is a subspace consisting of “symmetric” signals. Hence, V m and W m are symmetries consisting of signals that have the properties \(s_{m}=\mathcal{P}_{m}[s_{m}]\in V_{m}\) and \(w_{m}=\mathcal{R}_{m}[s_{m}]\in W_{m}\), respectively.

  3. 3.

    The line followed here for the identification of the mother wavelet ψ(t) starting from the scaling function ϕ(t) is due to Taubman and Marcellin [12]. Other authors, e.g., Daubechies [4] and Vetterli and Kovačević [14] identify ψ(t) by imposing the desired cross properties with ϕ(t).

  4. 4.

    For the terms and acronyms (nonstandard) we use, see the introduction to this chapter.

  5. 5.

    The author wants to thank Roberto Rinaldo for his contribution to this section.

  6. 6.

    Note that, since we are dealing with separable 2D filters h ij (m,n)=h i (m)h j (n), one can first process the rows and then the columns of the image, without changing the result.

References

  1. E. Candés, L. Demanet, D. Donoho, L. Ying, Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Colthurst, Multidimensional wavelets. Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mathematics, June 1997

    Google Scholar 

  3. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Daubechies, Ten Lecture on Wavelets (SIAM, Philadelphia, 1992)

    Book  Google Scholar 

  5. D. Gabor, Theory of communications. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  6. G. Karlsson, M. Vetterli, Extension of finite length signals for sub-band coding. Signal Process. 17, 161–168 (1989)

    Article  Google Scholar 

  7. S. Mallat, A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  8. J. Ma, G. Plonka, The curvelet transform: a review of recent applications. IEEE Signal Process. Mag. 27, 118–132 (2010)

    Article  Google Scholar 

  9. R.A. Mayer, C.S. Burrus, A unified analysis of multirate and periodically time varying digital filters. IEEE Trans. Circuits Syst. CAS–29, 327–331 (1982)

    Google Scholar 

  10. A. Said, W.A. Pearlman, A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)

    Article  Google Scholar 

  11. J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3462 (1993)

    Article  MATH  Google Scholar 

  12. D. Taubman, M.W. Marcellin, JPEG2000, Image Compression Fundamentals and Practice (Kluwer Academic, Boston, 2002)

    Book  Google Scholar 

  13. P.P. Vaidyanathan, Multirate Systems and Filter Banks (Prentice Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  14. M. Vetterli, J. Kovac̆ević, Wavelets and Subband Coding (Prentice Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  15. G.K. Wallace, The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38, 18–34 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Cariolaro .

Appendices

Appendix A: Proof of Proposition 15.7 on Coefficients at Steps m and m+1

We first establish the following statement:

Proposition 15.14

A m →ℝ interpolator followed by an ℝ→ℤ m+1 decimator is equivalent to a m →ℤ m+1 decimator. To calculate the global impulse response \(\tilde{g}_{12}(t)\), first calculate the convolution of the component impulse response g 12(t)=g 2(t)∗g 1(t), t∈ℝ, and then apply the ℝ→ℤ m down-sampling, that is,

$$\tilde{g}_{12}(v)=\int_{\mathbb{R}}\mathrm{d}\tau\,g_1(v-\tau)g_2(\tau) ,\quad v\in\mathbb{Z}.$$

The statement, illustrated in Fig. 15.38, is a consequence of the general result on the cascade of QIL tf, developed in Chap. 7, as soon as we note that ℤ m ⊃ℤ m+1 (see Problem 15.6). The conclusion is that the combination of the two blocks, each one operating on continuous times, gives a block operating on discrete times, which is the crucial point for the full discretization.

Fig. 15.38
figure 38

Interpretation of Proposition 15.14: the impulse response \(\tilde{g}_{12}(u)\) of the ℤ m →ℤ m+1 decimator is the sampled version of the convolution g 1g 2(t), t∈ℝ

We now prove Proposition 15.7. The link S m (u)→S m+1(v) is given by ℤ m →ℝ interpolator followed by a decimator with impulse response respectively

$$c_{m+1}(t)=\varphi^{(m+1)\ast}(-t) ,\qquad e_m(t)=2^{-m}\varphi ^{(m)}(t) . $$
(15.93)

Then, we apply Proposition 15.14 with g 1=c m+1 and g 1=e m and evaluate the continuous convolution

$$g_{12}(t)=2^{-m}\int_{\mathbb{R}}\mathrm{d}\tau\,\varphi^{(m+1)\ast}(\tau -t) \varphi^{(m)}(\tau) , $$
(15.94)

where, by (15.22),

$$\begin{aligned}[c]&\varphi^{(m+1)}(t)=2^{-(m+1)} \varphi\bigl(2^{-(m+1)}t\bigr)=2^{-m}2^{-1/2}\varphi\bigl(2^{-m}(t/2)\bigr) ,\\&\varphi^{(m)}(t)=2^{-m} \varphi\bigl(2^{-m}t\bigr) .\end{aligned}$$

Hence,

$$ \begin{array}{*{20}l} \displaystyle {g_{12} (t) = } \hfill & { = 2^{ - m} 2^{ - m} 2^{ - 1/2} \int_{\rm \mathbb{R}} {\rm d} \tau \,\varphi *\left( {\frac{{2^{ - m} \tau- 2^{ - m} t}}{2}} \right)\varphi (2^{ - m} \tau )} \hfill\\ {} \hfill & { = 2^{ - m} 2^{ - 1/2} \int_{\rm \mathbb{R}} {{\rm d}\tau } \,\varphi *\left( {\frac{{\tau- 2^{ - m} t}}{2}} \right)\varphi (\tau ),} \hfill\\ \end{array} $$

where we have make the variable change τ→2m τ. Next, we use the two-scale relation (15.46a) with t→(τ−2m t)/2 and obtain

$$g_{12}(t)=2^{-m}\sum_n g_0^\ast(n)\int_{\mathbb{R}}\mathrm{d}\tau\,\varphi^\ast\bigl(\tau -n-2^{-m}t\bigr) \varphi(\tau) ,$$

where in general we cannot use the orthogonality condition. But, restricting t to ℤ m , that is, t=2m k, the integral gives δ nk . Hence,

$$\tilde{g}_{12}\bigl(2^m k\bigr)=g_{12}\bigl(2^m k\bigr )=2^{-m}g_0^\ast(-k) .$$

To get the impulse response of the link S m (u)→D m+1(v), it is sufficient to replace c m+1 with d m+1 in (15.93) and the two-scale equation (15.46a) with (15.47). The result is \(\tilde{g}_{12}(2^{m}k)=2^{-m}g_{1}^{\ast}(-k)\).

Appendix B: Interpretation of the Expansion of ϕ(t) and ψ(t)

We consider the expansion of the functions ϕ(t) and ψ(t) obtained with the bases \(\boldsymbol{\varPhi}_{-1}=\{\sqrt{2} \varphi (2t-n)\mid n\in\mathbb{Z}\}\)

$$\begin{aligned}[c]g_0(n)&=\sqrt{2}\int_{\mathbb{R}}\mathrm{d}t \,\varphi(t) \varphi ^\ast(2t-n),\qquad \varphi(t)=\sqrt{2} \sum_{n=-\infty}^{+\infty}g_0(n) \varphi(2t-n), \\g_1(n)&=\sqrt{2}\int_{\mathbb{R}}\mathrm{d}t\, \varphi(t) \varphi ^\ast(2t-n),\qquad \psi(t)=\sqrt{2} \sum_{n=-\infty}^{+\infty}g_1(n) \varphi(2t-n) ,\end{aligned} $$
(15.95)

where the right-hand sides represent the two-scale equations.

The system interpretation of these relations shown in Fig. 15.39. With the introduction of the auxiliary signals

$$y(t)=\varphi(t/2),\qquad g(t)=\bigl(1/\sqrt{2}\,\bigr)\varphi ^\ast(-t)\,{\buildrel\varDelta\over=} \,\bigl(1/\sqrt{2}\,\bigr)\varphi _-^\ast(t) ,$$

the first of (15.95) can be written as

$$g_0(n)=\int_{-\infty}^{+\infty}\bigl(1/\sqrt{2}\,\bigr) \varphi (u/2) \varphi(u-n)\, \mathrm{d}u=\int_{-\infty}^{+\infty}q(u-n) y(u) \,\mathrm{d}u .$$

Then, starting from ϕ(t), g 0(n) is obtained with scale change of \(a=\frac{1}{2}\) followed by an ℝ→ℤ decimator with impulse response q(t), t∈ℝ. In the inverse relation (15.46a), (15.46b) the coefficients g 0(n), n∈ℤ, are ℤ→ℝ interpolated with impulse response \(\sqrt{2} \varphi(t)\) and give the intermediate signal y(t); then, y(t) is dilated by \(a=\frac{1}{2}\) to give the scaling function ϕ(t), t∈ℝ.

Fig. 15.39
figure 39

Above: generation of expansion coefficients g 0(n) from the scaling function ϕ(t) and recovery of ϕ(t) from g 0(n). Below: generation of g 1(n) from the mother wavelet ψ(t) and recovery of ψ(t) from g 1(n)

A similar interpretation, shown in Fig. 15.39, holds for the generation of the coefficients g 1(n) from the mother wavelet ψ(t) and the reconstruction of ψ(t) from g 1(n).

Using the rules of the Fourier analysis of interpolators and decimators, we find

$$ \begin{array}{l} Y(f) = \sqrt {2\Phi } (f)G_0 \left( f \right),\quad \Phi (f) = \frac{1}{2}Y\left( {\frac{1}{2}f} \right) = \frac{{\sqrt 2 }}{2}\Phi \left( {\frac{1}{2}f} \right)G_0 \left( {\frac{1}{2}f} \right), \\ {\rm references} \\ \begin{array}{*{20}l} {Y(f)} \hfill & { = 2\Phi (2f),} \hfill\\ {G_0 (f)} \hfill & { = {\rm rep}_1 \left[ {\left( {1/\sqrt 2 } \right)\Phi *(f)Y(f)} \right] = \sqrt 2 {\rm rep}_1 \left[ {\Phi *(f)\Phi (2f)} \right],} \hfill\\ \end{array} \\ \end{array} $$

which give (15.21).

We now prove Proposition 15.11. Combination of (15.63) and (15.66) gives

$$ \begin{array}{*{20}l} 2 \hfill & { = \sum\limits_{k =- \infty }^{ + \infty } {\left| {\Phi \left( {\frac{1}{2}f - \frac{1}{2}k} \right)} \right|^2 \left| {G_0 \left( {\frac{1}{2}f - \frac{1}{2}k} \right)} \right|} ^2 } \hfill\\ {} \hfill & { = \sum\limits_{k =- \infty }^{ + \infty } {\left| {\Phi \left( {\frac{1}{2}f - h} \right)} \right|^2 \left| {G_0 \left( {\frac{1}{2}f - h} \right)} \right|} ^2 } \hfill\\ {} \hfill & { + \sum\limits_{k =- \infty }^{ + \infty } {\left| {\Phi \left( {\frac{1}{2}f - h - \frac{1}{2}} \right)} \right|^2 \left| {G_0 \left( {\frac{1}{2}f - h - \frac{1}{2}} \right)} \right|^2 .} } \hfill\\ \end{array} $$

Next, considering that G 0(f) has period 1 and using again (15.66), we have

$$ \begin{array}{*{20}l} 2 \hfill & { = \left| {G_0 \left( {\frac{1}{2}f} \right)} \right|^2 \sum\limits_{h =- \infty }^{ + \infty } {\left| {\Phi \left( {\frac{1}{2}f - h} \right)} \right|^2 \left| {G_0 \left( {\frac{1}{2}f - \frac{1}{2}} \right)} \right|^2 } \sum\limits_{h =- \infty }^{ + \infty } {\left| {\Phi \left( {\frac{1}{2}f - h - \frac{1}{2}} \right)} \right|^2 } } \hfill\\ {} \hfill & { = \left| {G_0 \left( {\frac{1}{2}f} \right)} \right|^2+ \left| {G_0 \left( {\frac{1}{2}f - \frac{1}{2}} \right)} \right|^2 ,} \hfill\\ \end{array} $$

which is equivalent to (15.67). In fact, from (15.21) we obtain \(2 |\varPhi(f)|^{2}=|\varPhi(\frac{1}{2}f)|^{2} |G_{0}(\frac{1}{2}f)|^{2}\). Taking the periodic repetition and using (15.66), we get (15.67).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cariolaro, G. (2011). Multiresolution and Wavelets. In: Unified Signal Theory. Springer, London. https://doi.org/10.1007/978-0-85729-464-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-464-7_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-463-0

  • Online ISBN: 978-0-85729-464-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics