Skip to main content

Capacitive Sensors for Whole Body Interaction

  • Chapter
  • First Online:
Whole Body Interaction

Part of the book series: Human-Computer Interaction Series ((HCIS))

Abstract

Capacitive proximity sensors can be used to implement a variety of expressive input devices. They are especially suitable for Whole Body Interaction as they are small, robust, flexible, and can be both worn on the body or embedded into the environment. This chapter discusses technical challenges that arise when using capacitive sensors for tracking human motion, namely sensor shielding and ensuring both low latency and high sensitivity. A custom sensor design and an adaptive moving average filter presented here address these challenges. Two user studies evaluated these sensors as input modalities for different computer games. They found evidence that capacitive sensors offer a friendly but challenging behavior, being easy to learn but hard to master.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     For example,in theory objects need a ground connection for the capacitor to work. However, such a ground connection is provided by capacitive couplingbetween the object and the environment. Therefore, in practice a conductive ground connection is not needed.

  2. 2.

     Rail-to-Rail means that the output voltage can reach the full range of the input voltage.

References

  1. Cremer, M.: Ueber die Registrierung mechanischer Vorgänge auf electrischem Wege, speziell mit Hilfe des Saitengalvanometers und Saitenelectrometers. Münch. Med. Wochenschr. 54, 1629–1630 (1907)

    Google Scholar 

  2. Glinsky, A.V.: The theremin in the emergence of electronic music. Ph.D. thesis, New York University, New York (1992)

    Google Scholar 

  3. Koster, R.: A Theory of Fun for Game Design. Paraglyph Press (2004)

    Google Scholar 

  4. Lee, C.H., Hu, Y., Selker, T.: iSphere: A proximity-based 3D input interface. In: Proceedings of CAAD Futures 2005. http://web.media.mit.edu/~jackylee/publication/209J.pdf(2005)

  5. Lion Precision: Capacitive sensor operation and optimization. Tech. rep. http://www.lionprecision.com/tech-library/technotes/cap-0020-%sensor-theory.html (2006)

    Google Scholar 

  6. Mason, C.: Terpsitone.A new electronic novelty. Radio Craft 335(1936)

    Google Scholar 

  7. Myers, D.:A q-study of game player aesthetics. Simul.Gaming 21(4), 375-396 (1990). doi:http://dx.doi.org/10.1177/104687819002100403. http://dx.doi.org/http://dx.doi.org/10.1177/104687819002100403

    Google Scholar 

  8. Plamondon, R., Alimi, A.M.:Speed/accuracy trade-offs in target-directed movements. Behav. Brain Sci. 20(2), 279–303; discussion 303–349 (1997). http://www.ncbi.nlm.nih.gov/pubmed/10096999

    Google Scholar 

  9. Rekimoto, J.:Gesturewrist and gesturepad:unobtrusive wearable interaction devices. http://citeseer.ist.psu.edu/rekimoto01gesturewrist.html(2001)

  10. Rekimoto, J., Wang, H.: Sensing gamepad: electrostatic potential sensing for enhancing entertainment oriented interactions. In: CHI ’04, pp. 1457–1460. ACM Press, New York (2004). doi:http://doi.acm.org/10.1145/985921.986089. http://dx.doi.org/http://doi.acm.org/10.1145/985921.986089

  11. Reverter, F., Li, X., Meijer, G.: Stability and accuracy of active shielding for grounded capacitive sensors. Meas. Sci. Technol. 17, 2884 (2006)

    Article  Google Scholar 

  12. Smith, J.: Electric field imaging. Ph.D. thesis, Massachusetts Institute of Technology (1999). http://web.media.mit.edu/jrs/phd.pdf

  13. Smith, J., White, T., Dodge, C.: Electric field sensing for graphical interfaces. Comput. Graph. Appl. 18(3), 54-61 (1998). http://www.media.mit.edu/physics/publications/papers/98.02.CGA_Final.pdf

  14. Smith, S.: Digital Signal Processing: A Practical Guide for Engineers and Scientists, p. 278f. Newnes (2003)

    Google Scholar 

  15. Taylor, B.T., Bove, M.V.: Graspables: grasp-recognition as a user interface. In: In Proceedings CHI’09, pp. 917-926. ACM, New York (2009). doi:10.1145/1518701.1518842. http://dx.doi.org/10.1145/1518701.1518842

  16. Teixeira, T., Dublon, G., Savvides, A.: A Survey of Human-Sensing: Methods for Detecting Presence, Count, Location, Track, and Identity

    Google Scholar 

  17. Valtonen, M., Maentausta, J., Vanhala, J.: Tiletrack: Capacitive human tracking using floor tiles. In: PERCOM ’09: Proceedings of the 2009 IEEE International Conference on Pervasive Computing and Communications, pp. 1–10. IEEE Computer Society, Washington, DC (2009). doi:http://dx.doi.org/10.1109/PERCOM.2009.4912749

  18. Wimmer, R., Holleis, P., Kranz, M., Schmidt, A.: Thracker – using capacitive sensing for gesture recognition. ICDCSW 0, 64 (2006). doi:http://doi.ieeecomputersociety.org/10.1109/ICDCSW.2006.109. http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICDCSW.2006.109

  19. Wimmer, R., Kranz, M., Boring, S., Schmidt, A.: A capacitive sensing toolkit for pervasive activity detection and recognition. In: PerCom ’07 (2007)

    Google Scholar 

  20. Wimmer, R., Kranz, M., Boring, S., Schmidt, A.: CapTable and capShelf-unobtrusive activity recognition using networked capacitive sensors. In: Fourth International Conference on Networked Sensing Systems, 2007. INSS’07, pp. 85–88 (2007)

    Google Scholar 

Download references

Acknowledgement

The user studies were planned, conducted, and analyzed by Annette Reiter, a graduate student I supervised.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Wimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wimmer, R. (2011). Capacitive Sensors for Whole Body Interaction. In: England, D. (eds) Whole Body Interaction. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-0-85729-433-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-433-3_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-432-6

  • Online ISBN: 978-0-85729-433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics