Skip to main content

Part of the book series: Undergraduate Topics in Computer Science ((UTICS))

  • 12k Accesses

Abstract

In the 1930s Kurt Gödel Alonso Church, and Alan Turing laid important foundations for logic and, theoretical computer science. Of particular interest for AI are Gödel’s theorems. The completeness theorem states that first-order predicate logic is complete. This means that every true statement that can be formulated in predicate logic is provable using the rules of a formal calculus. Using programmable computers, on this basis, automatic theorem provers could later be constructed as implementations of formal calculi. We introduce the language of first-order predicate logic, develop the resolution calculus and show how automated theorem provers can be built and applied to prove relevant problems in every day reasoning and software engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    CADE is the annual “Conference on Automated Deduction” [CAD] and ATP stands for “Automated Theorem Prover”.

References

  1. W. Bibel. Automated Theorem Proving. Vieweg, Wiesbaden, 1982.

    MATH  Google Scholar 

  2. CADE: Conference on Automated Deduction. www.cadeconference.org.

  3. C. L. Chang and R. C. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, Orlando, 1973.

    MATH  Google Scholar 

  4. E. Eder. Relative Complexities of First Order Calculi. Vieweg, Wiesbaden, 1991.

    Google Scholar 

  5. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, Berlin, 1996.

    MATH  Google Scholar 

  6. B. Fischer and J. Schumann. Setheo goes software engineering: application of atp to software reuse. In Conference on Automated Deduction (CADE-14). LNCS, volume 1249, pages 65–68. Springer, Berlin, 1997. http://ase.arc.nasa.gov/people/schumann/publications/papers/cade97-reuse.html.

    Google Scholar 

  7. K. Gödel. Diskussion zur Grundlegung der Mathematik, Erkenntnis 2. Monatshefte Math. Phys., 32(1):147–148, 1931.

    Google Scholar 

  8. J. A. Kalman. Automated Reasoning with OTTER. Rinton, Paramus, 2001. www-unix.mcs.anl.gov/AR/otter/index.html.

    MATH  Google Scholar 

  9. D. W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  10. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: a high-performance theorem prover. J. Autom. Reason., 8(2):183–212, 1992. www4.informatik.tu-muenchen.de/~letz/setheo.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. McCune. Automated deduction systems and groups. www-unix.mcs.anl.gov/AR/others.html. See also www-formal.stanford.edu/clt/ARS/systems.html.

  12. M. Newborn. Automated Theorem Proving: Theory and Practice. Springer, Berlin, 2000.

    Google Scholar 

  13. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, volume 2283. Springer, Berlin, 2002. www.cl.cam.ac.uk/Research/HVG/Isabelle.

    MATH  Google Scholar 

  14. J. Schumann. Automated Theorem Proving in Software Engineering. Springer, Berlin, 2001.

    Google Scholar 

  15. S. Schulz. E—a brainiac theorem prover. J. AI Commun., 15(2/3):111–126, 2002. www4.informatik.tu-muenchen.de/~schulz/WORK/eprover.html.

    MATH  Google Scholar 

  16. T. Segaran, C. Evans, and J. Taylor. Programming the Semantic Web. O’Reilly, Cambridge, 2009.

    Google Scholar 

  17. G. Sutcliffe and C. Suttner. The state of CASC. AI Commun., 19(1):35–48, 2006. CASC-Homepage: www.cs.miami.edu/~tptp/CASC.

    MATH  MathSciNet  Google Scholar 

  18. L. v. Ahn. Games with a purpose. IEEE Comput. Mag., 96–98, June 2006. http://www.cs.cmu.edu/~biglou/ieee-gwap.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ertel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ertel, W. (2011). First-order Predicate Logic. In: Introduction to Artificial Intelligence. Undergraduate Topics in Computer Science. Springer, London. https://doi.org/10.1007/978-0-85729-299-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-299-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-298-8

  • Online ISBN: 978-0-85729-299-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics