Skip to main content

Signal Processing Techniques

  • Chapter
  • First Online:

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Structural health monitoring heavily relies on signal processing techniques that are necessary to post-process measured signals. It is these signals that indicate the state of the structure. This chapter addresses some of the important issues regarding signal processing of the measured signals, as it applies to the detection and characterization of damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alleyne D, Cawley P (1991) A two-dimensional Fourier transform method for the measurement of propagating multimode Signals. J Acoust Soc Am 89:1159–68

    Article  Google Scholar 

  2. Amaratunga K, Williams JR (1995) Integration using wavelet. In: Proceedings of SPIE, wavelet application for dual use, vol 2491, pp 894–902

    Google Scholar 

  3. Amaratunga K, Williams JR (1997) Wavelet-Galerkin solution of boundary value problems. Arch Comput Meth Eng 4(3):243–285

    Article  MathSciNet  Google Scholar 

  4. Bacry E, Mallat S, Papanicolac G (1991) A wavelet space–time adaptive numerical method for partial differential equations. Technical report No 591, Robotics report No 257, Courant Institute of Mathematical Sciences, New York University, New York

    Google Scholar 

  5. Bacry E, Mallat S, Papanicolac G (1992) A wavelet based space–time adaptive numerical method for partial differential equations. Math Model Numer Anal 26:793–834

    MATH  Google Scholar 

  6. Basri R, Chiu WK (2004) Numerical analysis on the interaction of guided Lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Comp Struct 66:87–99

    Article  Google Scholar 

  7. Battle G (1987) A block spin construction of ondelettes. Part I Lemarie functions. Commun Math Phys 110:601–615

    Google Scholar 

  8. Beylkin G (1992) On the representation of operators in bases of compactly supported wavelets. SIAM J Numer Anal 6(6):1716–1740

    Article  MathSciNet  Google Scholar 

  9. Dahmen W (2001) Wavelet methods for PDEs some recent developments. J Computat Appl Math 128(1-):133–85

    Article  MathSciNet  MATH  Google Scholar 

  10. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:906–966

    Google Scholar 

  11. Daubechies I (1992) Ten lectures on wavelets. Ten lectures on wavelets

    Google Scholar 

  12. Davis PJ (1963) Interpolation and approximation. Blaisdell, New York

    MATH  Google Scholar 

  13. Doyle JF (1997) Wave propagation in structures. Springer, New York

    Book  MATH  Google Scholar 

  14. Glowinski R, Rieder A, Wells Jr, RO, Zhou X (1993) A Wavelet Multilevel method for Dirichlet boundary value problems in general domains. Technical report 93-06, Computational Mathematics Laboratory, Rice University

    Google Scholar 

  15. Gopalakrishnan S, Chakraborty A, Roy Mahapatra D (2008) Spectral finite element method. Springer, UK

    MATH  Google Scholar 

  16. Hong TK, Kennett BLN (2002) On a wavelet based method for the numerical simulation of wave propagation. J Comput Phys 183:577–622

    Article  MathSciNet  MATH  Google Scholar 

  17. Joly P, Maday Y, Perrier V (1994) Towards a method for solving partial differential equations by using wavelet packet bases. Comp Meth Appl Mech Eng 116:193–202

    Article  MathSciNet  Google Scholar 

  18. Latto A, Resnikoff H, Tanenbaum E (1991) The evaluation of connection coefficients of compactly supported wavelets. In: Proceedings of French-USA workshop on wavelets and turbulence. Princeton University, Springer, New York

    Google Scholar 

  19. Mira Mitra (2006) Wavelet based spectral finite elements for wave propagation analysis in isotropic. Composite and nano composite structures, December, Ph.D., thesis, Indian Institute of Science, Bangalore, India

    Google Scholar 

  20. Patton BD, Marks PC (1996) One dimensional finite elements based on the Daubechies family of wavelets. AIAA J 34:1696–1698

    Article  MATH  Google Scholar 

  21. Qian S, Weis J (1993) Wavelets and the numerical solution of partial differential equations. J Comput Phys 106:155–175

    Article  MathSciNet  MATH  Google Scholar 

  22. Robertsson JOA, Blanch JO, Symes WW, Burrus CS (1994) Galerkin-wavelet modeling of wave propagation: optimal finite-difference stencil design. Math Comput Model 19:31–28

    Google Scholar 

  23. Rose JL (2004) Ultrasonic waves in solid media. Cambridge University Press, Cambridge

    Google Scholar 

  24. Stromberg JO (1982) A modified Franklin system and higher order spline systems on \(R^n\) as unconditional bases for Hardy spaces. Conf. in Honour of A. Zygmund, vol II, Wadsworth Mathematics Series, 475(493), pp 475–493

    Google Scholar 

  25. Yim H, Sohn Y (2000) Numerical simulation and visualization of elastic waves using mass-spring lattice model. IEEE Trans Ultrason Ferroelect Freq Control 47((3):549–558

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Gopalakrishnan .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gopalakrishnan, S., Ruzzene, M., Hanagud, S. (2011). Signal Processing Techniques. In: Computational Techniques for Structural Health Monitoring. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-0-85729-284-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-284-1_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-283-4

  • Online ISBN: 978-0-85729-284-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics