Skip to main content

Candidate Gene Association Studies in Stroke

  • Chapter
  • First Online:
Stroke Genetics

Abstract

This chapter describes the strategy of association studies that can be used to characterize the genetics of stroke. It explains advantages and disadvantages of the method and discusses current evidence of the genes that have been associated with stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat Genet. 2008;40(2):124–5.

    Article  PubMed  CAS  Google Scholar 

  2. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.

    Article  Google Scholar 

  3. Bersano A, Ballabio E, Bresolin N, Candelise L. Genetic polymorphisms for the study of multifactorial stroke. Hum Mutat. 2008;29(6):776–95.

    Article  PubMed  CAS  Google Scholar 

  4. Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004;61(11):1652–61.

    Article  PubMed  Google Scholar 

  5. Stankovi S, Majki-Singh N. Advances in the genetic basis of ischemic stroke. J Med Biochem. 2008;27(2):123–34.

    Article  Google Scholar 

  6. Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet. 2006;7(5):385–94.

    Article  PubMed  CAS  Google Scholar 

  7. Laird NM, Lange C. Family-based methods for linkage and association analysis. Adv Genet. 2008;60:219–52.

    Article  PubMed  Google Scholar 

  8. Meschia JF, Kissela BM, Brott TG, Brown Jr RD, Worrall BB, Beck J, et al. The siblings with ischemic stroke study (SWISS): a progress report. Clin Med Res. 2006;4(1):12–21.

    Article  PubMed  Google Scholar 

  9. Meschia JF, Nalls M, Matarin M, Brott TG, Brown Jr RD, Hardy J, et al. Siblings with ischemic stroke study: results of a genome-wide scan for stroke loci. Stroke. 2011;42(10):2726–32.

    Article  PubMed  Google Scholar 

  10. Attia J, Ioannidis JPA, Thakkinstian A, McEvoy M, Scott RJ, Minelli C, et al. How to use an article about genetic association: A: background concepts. JAMA. 2009;301:74–81.

    Article  PubMed  CAS  Google Scholar 

  11. Colhoun HM, McKeigue PM, Davey Smith G. Problems of reporting genetic associations with complex outcomes. Lancet. 2003;361(9360):865–72.

    Article  PubMed  Google Scholar 

  12. Dichgans M, Markus HS. Genetic association studies in stroke: methodological issues and proposed standard criteria. Stroke. 2005;36(9):2027–31.

    Article  PubMed  Google Scholar 

  13. Pruissen DM, Kappelle LJ, Rosendaal FR, Algra A. Genetic association studies in ischaemic stroke: replication failure and prospects. Cerebrovasc Dis. 2009;27(3):290–4.

    Article  PubMed  Google Scholar 

  14. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of Genetic Association studies (STREGA)–an extension of the STROBE statement. Eur J Clin Invest. 2009;39(4):247–66.

    Article  PubMed  Google Scholar 

  15. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.

    Article  PubMed  CAS  Google Scholar 

  16. Pompanon F, Bonin A, Bellemain E, Taberlet P. Genotyping errors: causes, consequences and solutions. Nat Rev Genet. 2005;6(11):847–59.

    Article  PubMed  CAS  Google Scholar 

  17. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet. 2005;37(11):1243–6.

    Article  PubMed  CAS  Google Scholar 

  18. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev. 2002;11(6):505–12.

    PubMed  Google Scholar 

  20. Wacholder S, Rothman N, Caporaso N. Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev. 2002;11(6):513–20.

    PubMed  Google Scholar 

  21. Khlat M, Cazes MH, Genin E, Guiguet M. Robustness of case-control studies of genetic factors to population stratification: magnitude of bias and type I error. Cancer Epidemiol Biomarkers Prev. 2004;13(10):1660–4.

    PubMed  Google Scholar 

  22. Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst. 2000;92(14):1151–8.

    Article  PubMed  CAS  Google Scholar 

  23. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P. Association mapping in structured populations. Am J Hum Genet. 2000;67(1):170–81.

    Article  PubMed  CAS  Google Scholar 

  24. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997–1004.

    Article  PubMed  CAS  Google Scholar 

  25. Bacanu SA, Devlin B, Roeder K. Association studies for quantitative traits in structured populations. Genet Epidemiol. 2002;22(1):78–93.

    Article  PubMed  Google Scholar 

  26. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.

    Article  PubMed  CAS  Google Scholar 

  27. Bardoczy Z, Gyorffy B, Kocsis I, Vasarhelyi B. Re-calculated Hardy-Weinberg values in papers published in atherosclerosis between 1995 and 2003. Atherosclerosis. 2004;173(1):141–3.

    Article  PubMed  CAS  Google Scholar 

  28. Sen S, Burmeister M. Hardy-Weinberg analysis of a large set of published association studies reveals genotyping error and a deficit of heterozygotes across multiple loci. Hum Genomics. 2008;3(1):36–52.

    PubMed  CAS  Google Scholar 

  29. Attia J, Thakkinstian A, McElduff P, Milne E, Dawson S, Scott RJ, et al. Detecting genotyping error using measures of degree of Hardy-Weinberg disequilibrium. Stat Appl Genet Mol Biol. 2010;9(1):Article 5.

    PubMed  Google Scholar 

  30. Trikalinos TA, Salanti G, Khoury MJ, Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol. 2006;163(4):300–9.

    Article  PubMed  Google Scholar 

  31. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  PubMed  CAS  Google Scholar 

  32. Meschia JF. Addressing the heterogeneity of the ischemic stroke phenotype in human genetics research. Stroke. 2002;33(12):2770–4.

    Article  PubMed  Google Scholar 

  33. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet. 2001;29(3):306–9.

    Article  PubMed  CAS  Google Scholar 

  34. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003;33(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  35. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, et al. Replicating genotype-phenotype associations. Nature. 2007;447(7145):655–60.

    Article  PubMed  CAS  Google Scholar 

  36. Lin E, Hsu SY. A Bayesian approach to gene-gene and gene-environment interactions in chronic fatigue syndrome. Pharmacogenomics. 2009;10(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  37. Smith JG, Melander O, Lovkvist H, Hedblad B, Engstrom G, Nilsson P, et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ Cardiovasc Genet. 2009;2(2):159–64.

    Article  PubMed  CAS  Google Scholar 

  38. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009;65(5):531–9.

    Article  PubMed  CAS  Google Scholar 

  39. Anderson CD, Biffi A, Rost NS, Cortellini L, Furie KL, Rosand J. Chromosome 9p21 in ischemic stroke: population structure and meta-analysis. Stroke. 2010;41(6):1123–31.

    Article  PubMed  CAS  Google Scholar 

  40. On beyond GWAS. Nat Genet. 2010;42(7):551.

    Google Scholar 

  41. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet. 1986;1(8479):507–8.

    Article  PubMed  CAS  Google Scholar 

  42. Gray R, Wheatley K. How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant. 1991;7 Suppl 3:9–12.

    PubMed  Google Scholar 

  43. Capon F, Allen MH, Ameen M, Burden AD, Tillman D, Barker JN, et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet. 2004;13(20):2361–8.

    Article  PubMed  CAS  Google Scholar 

  44. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med. 2005;24(9):1291–306.

    Article  PubMed  Google Scholar 

  45. Trikalinos TA, Salanti G, Zintzaras E, Ioannidis JP. Meta-analysis methods. Adv Genet. 2008;60:311–34.

    Article  PubMed  Google Scholar 

  46. Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol. 2008;61(7):634–45.

    Article  PubMed  Google Scholar 

  47. Thakkinstian A, Thompson JR, Minelli C, Attia J. Choosing between per-genotype, per-allele, and trend approaches for initial detection of gene-disease association. J Appl Stat. 2009;36(6):633–46.

    Article  Google Scholar 

  48. Minelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J. The choice of a genetic model in the meta-analysis of molecular association studies. Int J Epidemiol. 2005;34(6):1319–28.

    Article  PubMed  Google Scholar 

  49. Salanti G, Southam L, Altshuler D, Ardlie K, Barroso I, Boehnke M, et al. Underlying genetic models of inheritance in established type 2 diabetes associations. Am J Epidemiol. 2009;170(5):537–45.

    Article  PubMed  Google Scholar 

  50. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  PubMed  Google Scholar 

  51. Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One. 2009;4(6):e5639.

    Article  PubMed  Google Scholar 

  52. Ioannidis JP, Ntzani EE, Trikalinos TA. ‘Racial’ differences in genetic effects for complex diseases. Nat Genet. 2004;36(12):1312–8.

    Article  PubMed  CAS  Google Scholar 

  53. Moonesinghe R, Khoury MJ, Liu T, Ioannidis JP. Required sample size and nonreplicability thresholds for heterogeneous genetic associations. Proc Natl Acad Sci USA. 2008;105(2):617–22.

    Article  PubMed  CAS  Google Scholar 

  54. Pereira TV, Patsopoulos NA, Salanti G, Ioannidis JP. Discovery properties of genome-wide association signals from cumulatively combined data sets. Am J Epidemiol. 2009;170(10):1197–206.

    Article  PubMed  Google Scholar 

  55. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed  CAS  Google Scholar 

  56. Chapter 7: publication bias. In: Sutton AJ, Abrams KR, Jones DR, Sheldon TA, Song F, editors. Methods for meta-analysis in medical research. West Sussex: Wiley; 2000.

    Google Scholar 

  57. Sterne JAC, Egger M, Smith GD. Investigating and dealing with publication and other biases. In: Egger M, Smith GD, Altman DG, editors. Systematic reviews in health care. 2nd ed. London: BMJ Books; 2001.

    Google Scholar 

  58. Maguire J, Sturm J, Levi C, Thakkinstian A, Whyte S, Attia J. Polymorphisms in platelet glycoprotein 1bα and factor VII and risk of ischemic stroke. A meta-analysis. Stroke. 2008;39:1710–6.

    Article  PubMed  CAS  Google Scholar 

  59. Lin PI, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip-flop phenomenon. Am J Hum Genet. 2007;80(3):531–8.

    Article  PubMed  CAS  Google Scholar 

  60. Clarke GM, Cardon LR. Aspects of observing and claiming allele flips in association studies. Genet Epidemiol. 2010;34(3):266–74.

    PubMed  Google Scholar 

  61. Maguire JM, Thakkinstian A, Sturm J, Levi C, Lincz L, Parsons M, et al. Polymorphisms in platelet glycoprotein 1balpha and factor VII and risk of ischemic stroke: a meta-analysis. Stroke. 2008;39(6):1710–6.

    Article  PubMed  CAS  Google Scholar 

  62. Minelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J. The quality of meta-analyses of genetic association studies: a review with recommendations. Am J Epidemiol. 2009;170(11):1333–43.

    Article  PubMed  Google Scholar 

  63. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  PubMed  CAS  Google Scholar 

  64. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38(4):458–62.

    Article  PubMed  CAS  Google Scholar 

  65. Thakkinstian A, McKay GJ, McEvoy M, Chakravarthy U, Chakrabarti S, Silvestri G, et al. Systematic review and meta-analysis of the association between complement component 3 and age-related macular degeneration: a HUGE review and meta-analysis. Am J Epidemiol. 2011;173:1365–79.

    Article  PubMed  Google Scholar 

  66. Thanassoulis G, O’Donnell CJ. Mendelian randomisation. UptoDate. Wolters Kluwer Health.

    Google Scholar 

  67. Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, Rahimi K, et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. JAMA. 2010;303(24):2486–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth G. Holliday B.Sc. (Hons), Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Holliday, E.G., Oldmeadow, C.J., Maguire, J.M., Attia, J. (2013). Candidate Gene Association Studies in Stroke. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, London. https://doi.org/10.1007/978-0-85729-209-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-209-4_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-208-7

  • Online ISBN: 978-0-85729-209-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics