Skip to main content

Mixed-State Markov Models in Image Motion Analysis

  • Chapter

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

When analyzing motion observations extracted from image sequences, one notes that the histogram of the velocity magnitude at each pixel shows a large probability mass at zero velocity, while the rest of the motion values may be appropriately modeled with a continuous distribution. This suggests the introduction of mixed-state random variables that have probability mass concentrated in discrete states, while they have a probability density over a continuous range of values. In the first part of the chapter, we give a comprehensive description of the theory behind mixed-state statistical models, in particular the development of mixed-state Markov models that permits to take into account spatial and temporal interaction. The presentation generalizes the case of simultaneous modeling of continuous values and any type of discrete symbolic states. For the second part, we present the application of mixed-state models to motion texture analysis. Motion textures correspond to the instantaneous apparent motion maps extracted from dynamic textures. They depict mixed-state motion values with a discrete state at zero and a Gaussian distribution for the rest. Mixed-state Markov random fields and mixed-state Markov chains are defined and applied to motion texture recognition and tracking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Copyright (c) 2003, UCLA Vision Lab. Thanks to Daniel Cremers and Stefano Soatto for providing this sequence.

References

  1. Anderson, B., Moore, J.: Optimal filtering. Englewood Cliffs, Prentice-Hall (1979)

    MATH  Google Scholar 

  2. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  3. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc., Ser. B 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc., Ser. B 48(3), 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)

    Article  Google Scholar 

  6. Bouthemy, P., Hardouin, C., Piriou, G., Yao, J.F.: Mixed-state auto-models and motion texture modeling. J. Math. Imaging Vis. 25(3), 387–402 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnorr, C.: Variational optical flow computation in real time. IEEE Trans. Image Process. 14(5), 608–615 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cernuschi-Frias, B.: Mixed-states Markov random fields with symbolic labels and multidimensional real values. Rapport de Recherche, INRIA No 6255 (2007). http://hal.inria.fr/docs/00/16/59/37/PDF/RR-6255.pdf

  9. Chan, A., Vasconcelos, N.: Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 909–926 (2008)

    Article  Google Scholar 

  10. Chan, A.B., Vasconcelos, N.: Layered dynamic textures. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1862–1879 (2009). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.110

    Article  Google Scholar 

  11. Chetverikov, D., Peteri, R.: A brief survey of dynamic texture description and recognition. In: Proc. 4th International Conference on Computer Recognition Systems, CORES’05, Advances in Soft Computing, pp. 17–26. Springer, Berlin (2005)

    Google Scholar 

  12. Corpetti, T., Memin, E., Perez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  13. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  14. Crivelli, T., Cernuschi, B., Bouthemy, P., Yao, J.: Segmentation of motion textures using mixed-state Markov random fields. In: Proc. of SPIE, vol. 6315, p. 63150J. SPIE, Bellingham (2006)

    Google Scholar 

  15. Crivelli, T., Cernuschi-Frias, B., Bouthemy, P., Yao, J.F.: Mixed-state Markov random fields for motion texture modeling and segmentation. In: Proc. IEEE International Conference on Image Processing ICIP’06, Atlanta, USA, pp. 1857–1860 (2006)

    Google Scholar 

  16. Crivelli, T., Piriou, G., Bouthemy, P., Cernuschi-Frías, B., Yao, J.F.: Simultaneous motion detection and background reconstruction with a mixed-state conditional Markov random field. In: ECCV ’08: Proc. of the 10th European Conference on Computer Vision, Marseille, France, pp. 113–126 (2008)

    Google Scholar 

  17. Doretto, G., Chiuso, A., Wu, Y., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)

    Article  MATH  Google Scholar 

  18. Fablet, R., Bouthemy, P.: Motion recognition using non-parametric image motion models estimated from temporal and multiscale co-ocurrence statistics. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1619–1624 (2003)

    Article  Google Scholar 

  19. Fablet, R., Bouthemy, P., Perez, P.: Non-parametric motion characterization using causal probabilistic models for video indexing and retrieval. IEEE Trans. Image Process. 11(4), 393–407 (2002)

    Article  Google Scholar 

  20. Fazekas, S., Chetverikov, D.: Normal versus complete flow in dynamic texture recognition: a comparative study. In: Texture 2005: 4th International Workshop on Texture Analysis and Synthesis, ICCV’05, Beijing, pp. 37–42 (2005)

    Google Scholar 

  21. Fazekas, S., Amiaz, T., Chetverikov, D., Kiryati, N.: Dynamic texture detection based on motion analysis. Int. J. Comput. Vis. 82(1), 48–63 (2009)

    Article  Google Scholar 

  22. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  23. Guyon, X.: Random Fields on a Network: Modeling, Statistics and Applications. Springer, New York (1995)

    MATH  Google Scholar 

  24. Hardouin, C., Yao, J.F.: Spatial modelling for mixed-state observations. Electron. J. Stat. 2, 213–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  26. Hsieh, J., Yu, S., Chen, Y.: Motion-based video retrieval by trajectory matching. IEEE Trans. Circuits Syst. Video Technol. 16(3), 396–409 (2006)

    Article  Google Scholar 

  27. Lu, Z., Xie, W., Pei, J., Huang, J.: Dynamic texture recognition by spatio-temporal multiresolution histograms. In: IEEE Workshop on Motion and Video Computing, WACV/MOTION, pp. 241–246 (2005)

    Google Scholar 

  28. Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP, Image Underst. 56(1), 78–89 (1992). doi:10.1016/1049-9660(92)90087-J

    Article  MATH  Google Scholar 

  29. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: ECCV ’02: Proc. of the 7th European Conference on Computer Vision-Part I, pp. 661–675. Springer, London (2002)

    Google Scholar 

  30. Peteri, R., Chetverikov, D.: Dynamic texture recognition using normal flow and texture regularity. In: Proc. of IbPRIA, Estoril, pp. 223–230 (2005)

    Google Scholar 

  31. Peteri, R., Huiskes, M., Fazekas, S.: Dyntex: a comprehensive database of dynamic textures. http://www.cwi.nl/projects/dyntex/index.html

  32. Piriou, G., Bouthemy, P., Yao, J.F.: Recognition of dynamic video contents with global probabilistic models of visual motion. IEEE Trans. Image Process. 15(11), 3417–3430 (2006)

    Article  Google Scholar 

  33. Rahman, A., Murshed, M.: Real-time temporal texture characterisation using block based motion co-occurrence statistics. In: Proc. of the 11th IEEE International Conference on Image Processing, ICIP’04, pp. 1593–1596 (2004)

    Google Scholar 

  34. Saisan, P., Doretto, G., Wu, Y., Soatto, S.: Dynamic texture recognition. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR’01, Hawaii, pp. 58–63 (2001)

    Google Scholar 

  35. Salzenstein, F., Collet, C.: Fuzzy Markov random fields versus chains for multispectral image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1753–1767 (2006)

    Article  Google Scholar 

  36. Salzenstein, F., Pieczynski, W.: Parameter estimation in hidden fuzzy Markov random fields and image segmentation. Graph. Models Image Process. 59(4), 205–220 (1997)

    Article  Google Scholar 

  37. Vidal, R., Ravichandran, A.: Optical flow estimation and segmentation of multiple moving dynamic textures. In: Proc. of CVPR’05, San Diego, vol. 2, pp. 516–521 (2005)

    Google Scholar 

  38. Wheeden, R., Zygmund, A.: Measure and Integral: An Introduction to Real Analysis. Dekker, New York (1977)

    MATH  Google Scholar 

  39. Wu, J., Chung, A.C.S.: A segmentation model using compound Markov random fields based on a boundary model. IEEE Trans. Image Process. 16(1), 241–252 (2007). 10.1109/TIP.2006.884933

    Article  MathSciNet  Google Scholar 

  40. Yuan, L., Wen, F., Liu, C., Shum, H.: Synthesizing dynamic textures with closed-loop linear dynamic systems. In: Proc. of the 8th European Conference on Computer Vision, ECCV’04, Prague. Lecture Notes in Computer Science, vol. 3022, pp. 603–616. Springer, Berlin (2004)

    Google Scholar 

  41. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–927 (2007)

    Article  Google Scholar 

  42. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Process. 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Crivelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Crivelli, T., Bouthemy, P., Cernuschi Frías, B., Yao, Jf. (2011). Mixed-State Markov Models in Image Motion Analysis. In: Wang, L., Zhao, G., Cheng, L., Pietikäinen, M. (eds) Machine Learning for Vision-Based Motion Analysis. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-057-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-057-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-056-4

  • Online ISBN: 978-0-85729-057-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics