Skip to main content

Introduction: The Problem to be Solved

  • Chapter
  • First Online:
Book cover Lectures on Constructive Approximation

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1871 Accesses

Abstract

In practice, a function of interest is only given pointwise, that is, there exists a point grid \(\{{x{}_{j}\}}_{j=1,\ldots, G}\) where \(\{F{({x}_{j})\}}_{j=1,\ldots, G}\) is known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is certainly a simplification. For further details, see [58, 98, 145, 171, 202].

  2. 2.

    For instance, the Earth gravity model EGM96 (see [110, 203]) uses more than 130,000 basis functions, and EGM 2008 (see [146, 204]) even has more then 4,000,000 basis functions.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

    Google Scholar 

  2. Akhtar, N.: A multiscale harmonic spline interpolation method for the inverse spheroidal gravimetric problem. Ph.D. thesis, University of Siegen, Department of Mathematics, Geomathematics Group. Shaker, Aachen (2009)

    Google Scholar 

  3. Akhtar, N., Michel, V.: Reproducing Kernel based splines for the regularization of the inverse ellipsoidal gravimetric problem. Appl. Anal. (2011). Accepted for publication, pre-published online via doi:10.1080/00036811.2011.590479

    Google Scholar 

  4. Akram, M.: Constructive approximation on the 3-dimensional ball with focus on locally supported kernels and the Helmholtz decomposition. Ph.D. thesis, University of Kaiserslautern, Department of Mathematics, Geomathematics Group. Shaker, Aachen (2009)

    Google Scholar 

  5. Akram, M., Amina, I., Michel, V.: A study of differential operators for particular complete orthonormal systems on a 3D ball. Int. J. Pure Appl. Math. 73, 489–506 (2011)

    Google Scholar 

  6. Alfeld, P., Neamtu, M., Schumaker, L.L.: Fitting scattered data on sphere-like surfaces using spherical splines. J. Comput. Appl. Math. 73, 5–43 (1996)

    Google Scholar 

  7. Amann, H., Escher, J.: Analysis III, 2nd edn. Birkhäuser, Basel (2008)

    Google Scholar 

  8. Amirbekyan, A.: The application of reproducing kernel based spline approximation to seismic surface and body wave tomography: theoretical aspects and numerical results. Ph.D. thesis, University of Kaiserslautern, Department of Mathematics, Geomathematics Group (2007). www.kluedo.ub.uni-kl.de/volltexte/2007/2103/pdf/ThesisAbel.pdf

    Google Scholar 

  9. Amirbekyan, A., Michel, V.: Splines on the three-dimensional ball and their application to seismic body wave tomography. Inverse Probl. 24, 1–25 (2008)

    Google Scholar 

  10. Antoine, J.P., Demanet, L., Jacques, L., Vandergheynst, P.: Wavelets on the sphere: implementations and approximations. Appl. Comput. Harm. Anal. 13, 177–200 (2002)

    Google Scholar 

  11. Antoine, J.P., Vandergheynst, P.: Wavelets on the 2-sphere: A group-theoretic approach. Appl. Comput. Harm. Anal. 7, 1–30 (1999)

    Google Scholar 

  12. Ballani, L., Engels, J., Grafarend, E.W.: Global base functions for the mass density in the interior of a massive body (Earth). Manuscr. Geodaet. 18, 99–114 (1993)

    Google Scholar 

  13. Bäni, W.: Wavelets: Eine Einführung für Ingenieure. Oldenburg, München (2002)

    Google Scholar 

  14. Barron, A.R., Cohen, A., Dahmen, W., DeVore, R.A.: Approximation and learning by greedy algorithms. Ann. Stat. 36, 64–94 (2008)

    Google Scholar 

  15. Beckmann, J., Mhaskar, H.N., Prestin, J.: Quadrature formulas for integration of multivariate trigonometric polynomials on spherical triangles. Int. J. Geomath. 3, 119–138 (2012)

    Google Scholar 

  16. Berg, A.P., Mikhael, W.B.: A survey of mixed transform techniques for speech and image coding. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, vol. 4, pp. 106–109 (1999)

    Google Scholar 

  17. Berkel, P.: Multiscale methods for the combined inversion of normal mode and gravity variations. Ph.D. thesis, University of Kaiserslautern, Department of Mathematics, Geomathematics Group. Shaker, Aachen (2009)

    Google Scholar 

  18. Berkel, P., Fischer, D., Michel, V.: Spline multiresolution and numerical results for joint gravitation and normal mode inversion with an outlook on sparse regularisation. Int. J. Geomath. 1, 167–204 (2011)

    Google Scholar 

  19. Berkel, P., Michel, V.: On mathematical aspects of a combined inversion of gravity and normal mode variations by a spline method. Math. Geosci. 42, 795–816 (2010)

    Google Scholar 

  20. Blatter, C.: Wavelets: Eine Einführung. Vieweg, Braunschweig (1998)

    Google Scholar 

  21. Blick, C., Freeden, W.: Spherical spline application to radio occultation data. J. Geodetic Sci 1, 379–395 (2011)

    Google Scholar 

  22. Bogdanova, I., Vandergheynst, P., Antoine, J.P., Jacques, L., Morvidone, M.: Stereographic wavelet frames on the sphere. Appl. Comput. Harm. Anal. 19, 223–252 (2005)

    Google Scholar 

  23. Böhme, M., Potts, D.: A fast algorithm for filtering and wavelet decomposition on the sphere. Electron. Trans. Numer. Anal. 16, 70–93 (2003)

    Google Scholar 

  24. Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M., Jamet, O.: Wavelet frames: An alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163, 875–899 (2005)

    Google Scholar 

  25. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43, 129–159 (2001)

    Google Scholar 

  26. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    Google Scholar 

  27. Chui, C.K.: An Introduction to Wavelets. Academic, San Diego (1992)

    Google Scholar 

  28. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)

    Google Scholar 

  29. Coifman, R., Meyer, Y., Wickerhauser, V.: Adapted wave form analysis; waveletpackets and applications. In: ICIAM 91, Proceedings of the Second International Conference on Industrial and Applied Mathematics, pp. 41–50 (1992)

    Google Scholar 

  30. Coifman, R., Wickerhauser, V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theory 38, 713–718 (1992)

    Google Scholar 

  31. Conrad, M., Prestin, J.: Multiresolution on the sphere. In: Iske, A., Quak, E., Floater, M.S. (eds.) Summer School Lecture Notes on Principles of Multiresolution in Geometric Modelling, pp. 165–202, Munich (2001)

    Google Scholar 

  32. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 297–301 (1965)

    Google Scholar 

  33. Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Comput. 18, 595–609 (1997)

    Google Scholar 

  34. Dahlen, F.A., Simons, F.J.: Spectral estimation on a sphere in geophysics and cosmology. Geophys. J. Int. 174, 774–807 (2008)

    Google Scholar 

  35. Dahlen, F.A., Tromp, J.: Theoretical Global Seismology. Princeton University Press, Princeton (1998)

    Google Scholar 

  36. Dahlke, S., Dahmen, W., Schmitt, E., Weinreich, I.: Multiresolution analysis and wavelets on S 2 and S 3. Numer. Func. Anal. Opt. 16, 19–41 (1995)

    Google Scholar 

  37. Dahlke, S., Fornasier, M., Raasch, T.: Multilevel preconditioning and adaptive sparse solution of inverse problems. Math. Comput. 81, 419–446 (2009)

    Google Scholar 

  38. Dahlke, S., Steidl, G., Teschke, G.: Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere. Adv. Comput. Math. 21, 147–180 (2004)

    Google Scholar 

  39. Dahlke, S., Steidl, G., Teschke, G.: Frames and coorbit theory on homogeneous spaces with a special guidance on the sphere. J. Fourier Anal. Appl. 13, 387–403 (2007)

    Google Scholar 

  40. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Google Scholar 

  41. Daubechies, I., Defrise, M., DeMol, C.: An iterative thresholding algorithm for linear inverse problems with sparsity constraint. Commun. Pur. Appl. Math. 57, 1413–1457 (2004)

    Google Scholar 

  42. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient method for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14, 764–792 (2008)

    Google Scholar 

  43. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

    Google Scholar 

  44. Deuflhard, P.: On algorithms for the summation of certain special functions. Computing 17, 37–48 (1975)

    Google Scholar 

  45. DeVore, R.A.: Nonlinear approximation. Acta Numerica 7, 51–150 (1998)

    Google Scholar 

  46. Driscoll, J.R., Healy, R.M.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)

    Google Scholar 

  47. Dufour, H.M.: Fonctions orthogonales dans la sphère. résolution théorique du problème du potentiel terrestre. B. Geod. 51, 227–237 (1977)

    Google Scholar 

  48. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  49. Engl, H.W., Grever, W.: Using the L-curve for determining optimal regularization parameters. Numer. Math. 69, 25–31 (1994)

    Google Scholar 

  50. Fasshauer, G.E., Schumaker, L.L.: Scattered data fitting on the sphere. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 117–166. Vanderbilt University Press, Nashville, TN (1998)

    Google Scholar 

  51. Feinerman, R.P., Newman, D.J.: Polynomial Approximation. The Williams and Wilkins Company, Baltimore (1974)

    Google Scholar 

  52. Fengler, M.J., Freeden, W., Kohlhaas, A., Michel, V., Peters, T.: Wavelet modelling of regional and temporal variations of the Earth’s gravitational potential observed by GRACE. J. Geodesy 81, 5–15 (2007)

    Google Scholar 

  53. Fengler, M.J., Michel, D., Michel, V.: Harmonic spline-wavelets on the 3-dimensional ball and their application to the reconstruction of the Earth’s density distribution from gravitational data at arbitrarily shaped satellite orbits. Z. Angew. Math. Mech. 86, 856–873 (2006)

    Google Scholar 

  54. Fischer, D.: Sparse regularization of a joint inversion of gravitational data and normal mode anomalies. Ph.D. thesis, University of Siegen, Department of Mathematics, Geomathematics Group (2011). Verlag Dr. Hut, München

    Google Scholar 

  55. Fischer, D., Michel, V.: How to combine spherical harmonics and localized bases for regional gravity modelling and inversion. In: Siegen Preprints on Geomathematics, vol. 8. University of Siegen, Germany (2012, Preprint)

    Google Scholar 

  56. Fischer, D., Michel, V.: Inverting GRACE gravity data for local climate effects. In: Siegen Preprints on Geomathematics, vol. 9. University of Siegen, Germany (2012, Preprint)

    Google Scholar 

  57. Fischer, D., Michel, V.: Sparse regularization of inverse gravimetry — case study: spatial and temporal mass variations in South America. Inverse Probl. 28 (2012). 065012

    Google Scholar 

  58. Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments, 2nd edn. Springer, New York (1998)

    Google Scholar 

  59. Fokas, A.S., Hauk, O., Michel, V.: Electro-magneto-encephalography for the three-shell model: numerical implementation via splines for distributed current in spherical geometry. Inverse Probl. 28 (2012). 035009 (28 pp.)

    Google Scholar 

  60. Fornasier, M., Pitolli, F.: Adaptive iterative thresholding algorithms for magnetoencephalography (MEG). J. Comput. Appl. Math. 221, 386–395 (2008)

    Google Scholar 

  61. Freeden, W.: On approximation by harmonic splines. Manuscr. Geodaet. 6, 193–244 (1981)

    Google Scholar 

  62. Freeden, W.: On spherical spline interpolation and approximation. Math. Methods Appl. Sci. 3, 551–575 (1981)

    Google Scholar 

  63. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B G Teubner. Stuttgart, Leipzig (1999)

    Google Scholar 

  64. Freeden, W., Gerhards, C.: Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math. Geosci. 42, 817–838 (2010)

    Google Scholar 

  65. Freeden, W., Gervens, T., Schreiner, M.: Tensor spherical harmonics and tensor spherical splines. Manuscr. Geodaet. 19, 70–100 (1994)

    Google Scholar 

  66. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    Google Scholar 

  67. Freeden, W., Mayer, C.: Wavelets generated by layer potentials. Appl. Comput. Harm. Anal. 14, 195–237 (2003)

    Google Scholar 

  68. Freeden, W., Michel, V.: Constructive approximation and numerical methods in geodetic research today—an attempt at a categorization based on an uncertainty principle. J. Geodesy 73, 452–465 (1999)

    Google Scholar 

  69. Freeden, W., Michel, V.: Multiscale Potential Theory (with Applications to Geoscience). Birkhäuser, Boston (2004)

    Google Scholar 

  70. Freeden, W., Michel, V.: Orthogonal zonal, tesseral and sectorial wavelets on the sphere for the analysis of satellite data. Adv. Comput. Math. 21, 181–217 (2004)

    Google Scholar 

  71. Freeden, W., Michel, V., Nutz, H.: Satellite-to-satellite tracking and satellite gravity gradiometry (advanced techniques for high-resolution geopotential field determination). J. Eng. Math. 43, 19–56 (2002)

    Google Scholar 

  72. Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. Int. J. Geomath. 2, 177–218 (2011)

    Google Scholar 

  73. Freeden, W., Schneider, F.: Regularization wavelets and multiresolution. Inverse Probl. 14, 225–243 (1998)

    Google Scholar 

  74. Freeden, W., Schreiner, M.: Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere. Constr. Appr. 14, 493–515 (1998)

    Google Scholar 

  75. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences, a Scalar, Vectorial, and Tensorial Setup. Springer, Berlin (2009)

    Google Scholar 

  76. Freeden, W., Windheuser, U.: Earth’s gravitational potential and its MRA approximation by harmonic singular integrals. Z. Angew. Math. Mech. 75, 633–634 (1995)

    Google Scholar 

  77. Freeden, W., Windheuser, U.: Spherical wavelet transform and its discretization. Adv. Comput. Math. 5, 51–94 (1996)

    Google Scholar 

  78. Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination. Appl. Comput. Harm. Anal. 4, 1–37 (1997)

    Google Scholar 

  79. Gerhards, C.: Spherical decompositions in a global and local framework: theory and application to geomagnetic modeling. Int. J. Geomath. 1, 205–256 (2011)

    Google Scholar 

  80. Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D. thesis, University of Kaiserslautern, Department of Mathematics, Geomathematics Group (2011). Verlag Dr. Hut, München

    Google Scholar 

  81. Gledhill, J.A.: Aeronomic effects of the South Atlantic anomaly. Rev. Geophys. 14, 173–187 (1976)

    Google Scholar 

  82. Göttelmann, J.: Locally supported wavelets on the sphere. Z. Angew. Math. Mech. 78, 919–920 (1998)

    Google Scholar 

  83. Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23, 85–102 (1984/85)

    Google Scholar 

  84. Greville, T.N.E.: Introduction to spline functions. In: Greville, T.N.E. (ed.) Theory and Applications of Spline Functions, pp. 1–35. Academic, New York (1969)

    Google Scholar 

  85. Gronwall, T.: On the degree of convergence of Laplace series. Trans. Am. Math. Soc. 15, 1–30 (1914)

    Google Scholar 

  86. Haar, A.: Zur Theorie der orthogonalen Funktionen-Systeme. Math. Ann. 69, 331–371 (1910)

    Google Scholar 

  87. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Google Scholar 

  88. Hansen, P.C.: The L-curve and its use in the numerical treatment of inverse problems. In: Johnston, P. (ed.) Computational Inverse Problems in Electrocardiology, pp. 119–142. WIT Press, Southampton (2000)

    Google Scholar 

  89. Hebinger, G., Michel, V., Richter, M., Simon, A.: Speech Recognition Support of Assisted Living. Schriften zur Funktionalanalysis und Geomathematik 40 (2008)

    Google Scholar 

  90. Heirtzler, J.R.: The future of the South Atlantic anomaly and implications for radiation damage in space. J. Atmos. Sol.-Terr. Phy. 64, 1701–1708 (2002)

    Google Scholar 

  91. Heiskanen, W.A., Moritz, H.: Physical Geodesy, Reprint. Institute of Physical Geodesy, Technical University Graz/Austria (1981)

    Google Scholar 

  92. Hesse, K., Sloan, I.H., Womersly, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 1187–1219. Springer, Heidelberg (2010)

    Google Scholar 

  93. Heuser, H.: Funktionalanalysis, 3rd edn. B G Teubner, Stuttgart (1992)

    Google Scholar 

  94. Hobson, E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York (1965)

    Google Scholar 

  95. Holschneider, M.: Continuous wavelet transforms on the sphere. J. Math. Phys. 37, 4156–4165 (1996)

    Google Scholar 

  96. Holschneider, M., Chambodut, A., Mandea, M.: From global to regional analysis of the magnetic field on the sphere using wavelet frames, Phys. Earth Planet. In. 135, 107–124 (2003)

    Google Scholar 

  97. Holschneider, M., Iglewska-Nowak, I.: Poisson wavelets on the sphere. J. Fourier Anal. Appl. 13, 405–419 (2007)

    Google Scholar 

  98. Johnston, I.: Measured Tones. The Interplay of Physics and Music. Institute of Physics Publishing, Bristol (1989)

    Google Scholar 

  99. Jones, F.: Lebesgue Integration on Euclidean Spaces. Jones and Bartlett Publishers, Boston (1993)

    Google Scholar 

  100. Keiner, J., Prestin, J.: A Fast Algorithm for Spherical Basis Approximation. In: Govil, N.K., Mhaskar, H.N., Mohapatra, R.N., Nashed, Z., Szabados, J. (eds.) Frontiers in Interpolation and Approximation, pp. 259–286. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  101. Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin (1967)

    Google Scholar 

  102. Kress, R.: Numerical Analysis. Springer, New York (1998)

    Google Scholar 

  103. Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff International Publishing, Leyden (1977)

    Google Scholar 

  104. Kunis, S., Potts, D.: Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161, 75–98 (2003)

    Google Scholar 

  105. Lai, M.J., Shum, C.K., Baramidze, V., Wenston, P.: Triangulated spherical splines for geopotential reconstruction. J. Geodesy 83, 695–708 (2009)

    Google Scholar 

  106. Laín Fernández, N.: Optimally space-localized band-limited wavelets on \({\mathbb{S}}^{q-1}\). J. Comput. Appl. Math. 199, 68–79 (2007)

    Google Scholar 

  107. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Google Scholar 

  108. Lang, S.: Undergraduate Analysis, 2nd edn. Springer, New York (2001)

    Google Scholar 

  109. Le Gia, Q.T., Mhaskar, H.N.: Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47, 440–466 (2008)

    Google Scholar 

  110. Lemoine, F.G., Smith, D.E., Kunz, L., Smith, R., Pavlis, E.C., Pavlis, N.K., Klosko, S.M., Chinn, D.S., Torrence, M.H., Williamson, R.G., Cox, C.M., Rachlin, K.E., Wang, Y.M., Kenyon, S.C., Salman, R., Trimmer, R., Rapp, R.H., Nerem, R.S.: The development of the NASA GSFC and NIMA joint geopotential model. In: Proceedings of the International Symposium on Gravity, Geoid, and Marine Geodesy (GRAGEOMAR 1996), The University of Tokyo. Springer (1996)

    Google Scholar 

  111. Li, T.H.: Multiscale representation and analysis of spherical data by spherical wavelets. SIAM J. Sci. Comput. 21, 924–953 (1999)

    Google Scholar 

  112. Louis, A.K., Maaß, P., Rieder, A.: Wavelets: Theory and Applications. Wiley, Chichester (1997)

    Google Scholar 

  113. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Google Scholar 

  114. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic, Burlington (2009)

    Google Scholar 

  115. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Google Scholar 

  116. Masters, G., Richards-Dinger, K.: On the efficient calculation of ordinary and generalized spherical harmonics. Geophys. J. Int. 135, 307–309 (1998)

    Google Scholar 

  117. Maus, S., Rother, M., Hemant, K., Stolle, C., Lühr, H., Kuvshinov, A., Olsen, N.: Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys. J. Int. 164, 319–330 (2006)

    Google Scholar 

  118. Maus, S., Rother, M., Holme, R., Lühr, H., Olsen, N., Haak, V.: First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophys. Res. Lett. 29, 47–1 to 47–4 (2002)

    Google Scholar 

  119. McShane, E.J.: Integration. Princeton University Press, Princeton (1974)

    Google Scholar 

  120. Mhaskar, H.N.: Local quadrature formulas on the sphere. J. Complex. 20, 753–772 (2004)

    Google Scholar 

  121. Mhaskar, H.N.: Local quadrature formulas on the sphere, II. In: Neamtu M., Saff, E.B. (eds.) Advances in Constructive Approximation, pp. 333–344. Nashboro Press, Brentwood (2004)

    Google Scholar 

  122. Mhaskar, H.N., Narcowich, F.J., Prestin, J., Ward, J.D.: Polynomial frames on the sphere. Adv. Comput. Math. 13, 387–403 (2000)

    Google Scholar 

  123. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comput. 70, 1113–1130 (2000)

    Google Scholar 

  124. Mhaskar, H.N., Prestin, J.: Polynomial frames: a fast tour. In: Chui, C.K., Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XI: Gatlinburg 2004, pp. 101–132. Nashboro Press, Brentwood (2004)

    Google Scholar 

  125. Michel, D.: Framelet based multiscale operator decomposition. Ph.D. thesis, University of Kaiserslautern, Department of Mathematics, Geomathematics Group. Shaker, Aachen (2006)

    Google Scholar 

  126. Michel, V.: A wavelet based method for the gravimetry problem. In: Freeden, W. (ed.) Progress in Geodetic Science, Proceedings of the Geodetic Week, pp. 283–298. Shaker, Aachen (1998)

    Google Scholar 

  127. Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D. thesis, University of Kaiserslautern, Department of Mathematics, Geomathematics Group. Shaker, Aachen (1999)

    Google Scholar 

  128. Michel, V.: A multiscale approximation for operator equations in separable Hilbert spaces—case study: reconstruction and description of the Earth’s interior, Habilitation thesis. Shaker, Aachen (2002)

    Google Scholar 

  129. Michel, V.: Scale continuous, scale discretized and scale discrete harmonic wavelets for the outer and the inner space of a sphere and their application to an inverse problem in geomathematics. Appl. Comput. Harm. Anal. 12, 77–99 (2002)

    Google Scholar 

  130. Michel, V.: Regularized wavelet-based multiresolution recovery of the harmonic mass density distribution from data of the Earth’s gravitational field at satellite height. Inverse Probl. 21, 997–1025 (2005)

    Google Scholar 

  131. Michel, V.: Wavelets on the 3-dimensional ball. Proc. Appl. Math. Mech. 5, 775–776 (2005)

    Google Scholar 

  132. Michel, V.: Tomography—problems and multiscale solutions. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 949–972. Springer, Heidelberg (2010)

    Google Scholar 

  133. Michel, V.: Optimally localized approximate identities on the 2-sphere. Numer. Func. Anal. Opt. 32, 877–903 (2011)

    Google Scholar 

  134. Michel, V., Fokas, A.S.: A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Probl. 24 (2008). 045019 (25 pp.)

    Google Scholar 

  135. Michel, V., Wolf, K.: Numerical aspects of a spline-based multiresolution recovery of the harmonic mass density out of gravity functionals. Geophys. J. Int. 173, 1–16 (2008)

    Google Scholar 

  136. Mikhlin, S.G.: Mathematical Physics, an Advanced Course. North-Holland Publishing Company, Amsterdam (1970)

    Google Scholar 

  137. Mohlenkamp, M.J.: A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5, 159–184 (1999)

    Google Scholar 

  138. Müller, C.: Über die ganzen Lösungen der Wellengleichung. Math. Ann. 124, 235–264 (1952)

    Google Scholar 

  139. Müller, C.: Spherical Harmonics. Springer, Berlin (1966)

    Google Scholar 

  140. Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)

    Google Scholar 

  141. Narcowich, F.J., Petrushev, P., Ward, J.D.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Google Scholar 

  142. Narcowich, F.J., Ward, J.D.: Nonstationary wavelets on the m-sphere for scattered data. Appl. Comput. Harm. Anal. 3, 324–336 (1996)

    Google Scholar 

  143. Nievergelt, Y.: Wavelets Made Easy. Birkhäuser, Boston (1999)

    Google Scholar 

  144. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics—A Unified Introduction with Applications. Birkhäuser, Basel (1988). Translated from the Russian by R. P. Boss

    Google Scholar 

  145. Olson, H.F.: Music, Physics and Engineering, 2nd edn. Dover, New York (1967)

    Google Scholar 

  146. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K.: An Earth gravitational model to degree 2160: EGM2008. Presentation given at the 2008 European Geosciences Union General Assembly held in Vienna, Austria, 13–18 Apr 2008. http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/NPavlis&al_EGU2008.ppt

  147. Plato, R.: Numerische Mathematik kompakt, 4th edn. Vieweg + Teubner, Wiesbaden (2010)

    Google Scholar 

  148. Potts, D., Steidl, G., Tasche, M.: Kernels of spherical harmonics and spherical frames. In: Fontanella, F., Jetter, K., Laurent, P.J. (eds.) Advanced Topics in Multivariate Approximation, pp. 287–301. World Scientific, Singapore (1996)

    Google Scholar 

  149. Prestin, J., Rosca, D.: On some cubature formulas on the sphere. J. Approx. Theory 142, 1–19 (2006)

    Google Scholar 

  150. Protter, M.H., Morrey, C.B.: A First Course in Real Analysis, 2nd edn. Springer, New York (1977)

    Google Scholar 

  151. Purucker, M.E., Dyment, J.: Satellite magnetic anomalies related to seafloor spreading in the South Atlantic ocean. Geophys. Res. Lett. 27, 2765–2768 (2000)

    Google Scholar 

  152. Qian, S., Chen, D.: Signal representation using adaptive normalized Gaussian functions. Signal Process. 36, 1–11 (1994)

    Google Scholar 

  153. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  154. Reigber, C., Balmino, G., Schwintzer, P., Biancale, R., Bode, A., Lemoine, J-M., König, R., Loyer, S., Neumayer, H., Marty, J-C., Barthelmes, F., Perosanz, F., Zhu, S.Y.: A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett. 29, 37–1 to 37–4 (2002)

    Google Scholar 

  155. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Springer, New York (1996)

    Google Scholar 

  156. Renka, R.J.: Interpolation of data on the surface of a sphere. ACM T. Math. Software 10, 417–436 (1984)

    Google Scholar 

  157. Reuter, R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. Ph.D. thesis, Veröff. Geod. Inst. RWTH Aachen, RWTH Aachen, vol. 33 (1982)

    Google Scholar 

  158. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering, 4th edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  159. Rivlin, T.J.: An Introduction to the Approximation of Functions. Blaisdell Publishing Company, Waltham (1969)

    Google Scholar 

  160. Robin, L.: Fonctions Sphérique de Legendre et Fonctions Sphéroidale, vol. 1. Gauthier-Villars, Paris (1957)

    Google Scholar 

  161. Robin, L.: Fonctions Sphérique de Legendre et Fonctions Sphéroidale, vol. 2. Gauthier-Villars, Paris (1958)

    Google Scholar 

  162. Robin, L.: Fonctions Sphérique de Legendre et Fonctions Sphéroidale, vol. 3. Gauthier-Villars, Paris (1959)

    Google Scholar 

  163. Sard, A.: Linear Approximation. American Mathematical Society, Providence (1963)

    Google Scholar 

  164. Schaeben, H., Bernstein, S., Hielscher, R., Beckmann, J., Keiner, J., Prestin, J.: High resolution texture analysis with spherical wavelets. Mater. Sci. Forum 495–497, 245–254 (2005)

    Google Scholar 

  165. Schmidt, M., Fengler, M., Mayer-Gürr, T., Eicker, A., Kusche, J., Sánchez, L., Han, S-C.: Regional gravity modeling in terms of spherical base functions. J. Geodesy 81, 17–38 (2007)

    Google Scholar 

  166. Schneider, F.: Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group. Shaker, Aachen (1997)

    Google Scholar 

  167. Schoenberg, I.J.: On best approximations of linear operators. Nederl. Akad. Wetensch. Proc. Ser. A 67, 155–163 (1964)

    Google Scholar 

  168. Schreiner, M.: On a new condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 125, 531–539 (1997)

    Google Scholar 

  169. Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: SIGGRAPH’95 Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques pp. 161–172. ACM, New York (1995)

    Google Scholar 

  170. Schwarz, H.R.: Numerical Analysis: A Comprehensive Introduction. Wiley, Chichester (1989)

    Google Scholar 

  171. Sethares, W.A.: Tuning, Timbre, Spectrum, Scale. Springer, London (2005)

    Google Scholar 

  172. Simons, F.J.: Slepian functions and their use in signal estimation and spectral analysis. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 891–923. Springer, Heidelberg (2010)

    Google Scholar 

  173. Simons, F.J., Dahlen, F.A.: Spherical Slepian functions and the polar gap in geodesy. Geophys. J. Int. 166, 1039–1061 (2006)

    Google Scholar 

  174. Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48, 504–536 (2006)

    Google Scholar 

  175. Simons, F.J., Loris, I., Brevdo, E., Daubechies, I.C.: Wavelets and wavelet-like transforms on the sphere and their application to geophysical data inversion. Proc. SPIE 8138 (2011). 81380X

    Google Scholar 

  176. Simons, F.J., Loris, I., Nolet, G., Daubechies, I.C., Voronin, S., Judd, J.S., Vetter, P.A., Charléty, J., Vonesch, C.: Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophys. J. Int. 187, 969–988 (2011)

    Google Scholar 

  177. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Google Scholar 

  178. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40, 43–63 (1961)

    Google Scholar 

  179. Sloan, I.H., Womersley, R.S.: Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21, 107–125 (2004)

    Google Scholar 

  180. Szegö, G.: Orthogonal Polynomials, vol. XXIII, 14th edn. AMS Colloquium Publications, Providence (1975)

    Google Scholar 

  181. Temlyakov, V.N.: Greedy algorithms and m-term approximation. J. Approx. Theor. 98, 117–145 (1999)

    Google Scholar 

  182. Temlyakov, V.N.: Greedy algorithms with regard to multivariate systems with special structure. Constr. Approx. 16, 399–425 (1999)

    Google Scholar 

  183. Temlyakov, V.N.: Nonlinear methods of approximation. Found. Comput. Math. 3, 33–107 (2003)

    Google Scholar 

  184. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Johann Ambrosius Barth Verlag, Heidelberg (1995)

    Google Scholar 

  185. Trim, D.: Calculus. Prentice Hall, Scarborough (1993)

    Google Scholar 

  186. Tscherning, C.C.: Isotropic reproducing kernels for the inner of a sphere or spherical shell and their use as density covariance functions. Math. Geol. 28, 161–168 (1996)

    Google Scholar 

  187. Tygert, M.: Fast algorithms for spherical harmonic expansions II. J. Comput. Phys. 227, 4260–4279 (2008)

    Google Scholar 

  188. Voigt, A., Wloka, J.: Hilberträume und elliptische Differentialoperatoren. Bibliographisches Institut, Mannheim (1975)

    Google Scholar 

  189. Walnut, D.F.: An Introduction to Wavelet Analysis. Birkhäuser, Boston (2002)

    Google Scholar 

  190. Walter, W.: Einführung in die Potentialtheorie. Bibliographisches Institut, Mannheim (1971)

    Google Scholar 

  191. Walter, W.: Analysis 2, 3rd edn. Springer, Berlin (1992)

    Google Scholar 

  192. Wang, Z., Dahlen, F.A.: Spherical-spline parameterization of three-dimensional Earth models. Geophys. Res. Lett. 22, 3099–3102 (1995)

    Google Scholar 

  193. Wang, Z.X., Guo, D.R.: Special Functions. World Scientific, Singapore (1989)

    Google Scholar 

  194. Weinreich, I.: A construction of C1-wavelets on the two-dimensional sphere. Appl. Comput. Harm. Anal. 10, 1–26 (2001)

    Google Scholar 

  195. Werner, J.: Numerische Mathematik I: Lineare und nichtlineare Gleichungssysteme, Interpolation, numerische Integration. Vieweg, Braunschweig, Wiesbaden (1992)

    Google Scholar 

  196. Wesfried, E., Wickerhauser, M.V.: Adapted local trigonometric transforms and speech processing. IEEE Trans. Signal Process. 41, 3596–3600 (1993)

    Google Scholar 

  197. Wickerhauser, M.V.: INRIA lectures on wavelet packet algorithms. In: Minicourse lecture notes. INRIA, Rocquencourt (1991)

    Google Scholar 

  198. Wieczorek, M.A., Simons, F.J.: Localized spectral analysis on the sphere. Geophys. J. Int. 162, 655–675 (2005)

    Google Scholar 

  199. Wieczorek, M.A., Simons, F.J.: Minimum-variance spectral analysis on the sphere. J. Fourier Anal. Appl. 13, 665–692 (2007)

    Google Scholar 

  200. Windheuser, U.: Sphärische Wavelets: Theorie und Anwendung in der Physikalischen Geodäsie. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (1995)

    Google Scholar 

  201. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  202. Wood, A.: The Physics of Music. University Paperbacks, London (1962)

    Google Scholar 

  203. WWW: http://cddis.nasa.gov/926/egm96/egm96.html

  204. WWW: http://earth-info.nga.mil/gandg/wgs84/gravitymod/egm2008/

  205. WWW: http://www.csr.utexas.edu/grace

  206. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)

    Google Scholar 

  207. Yosida, K.: Functional Analysis, 6th edn. Classics in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  208. Zeidler, E. (ed.): Teubner-Taschenbuch der Mathematik, originally from I.N. Bronstein and K.A. Semendjajew. Teubner, Leipzig (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michel, V. (2013). Introduction: The Problem to be Solved. In: Lectures on Constructive Approximation. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8403-7_1

Download citation

Publish with us

Policies and ethics