Skip to main content

Is the CFL Condition Sufficient? Some Remarks

  • Chapter
The Courant–Friedrichs–Lewy (CFL) Condition

Abstract

We present some remarks about the CFL condition for explicit time discretization methods of Adams–Bashforth and Runge–Kutta type and show that for convection-dominated problems stability conditions of the type ΔtCΔx α are found for high order space discretizations, where the exponent α depends on the order of the time scheme. For example, for second order Adams–Bashforth and Runge–Kutta schemes we find α=4/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canuto, C., Hussaini, M.T., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  2. Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950)

    Article  MathSciNet  Google Scholar 

  3. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deriaz, E.: Stability of explicit numerical schemes for smooth convection-dominated problems. Preprint (2011)

    Google Scholar 

  5. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics, vol. 42. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  6. Gottlieb, D., Tadmor, E.: The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56(194), 565–588 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolomenskiy, D., Schneider, K., Deriaz, E.: In preparation (2012)

    Google Scholar 

  8. Peyret, R.: Spectral Methods of Incompressible Viscous Flows. Springer, Berlin (2001)

    Google Scholar 

  9. Schneider, K.: Numerical simulation of the transient flow behaviour in chemical reactors using a penalization method. Comput. Fluids 34, 1223–1238 (2005)

    Article  MATH  Google Scholar 

  10. Schneider, K., Kevlahan, N., Farge, M.: Comparison of an adaptive wavelet method and nonlinearly filtered pseudo-spectral methods for two-dimensional turbulence. Theor. Comput. Fluid Dyn. 9(3/4), 191–206 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

K.S. is grateful to Carlos de Moura for the invitation to the conference “CFL-Condition, 80 years gone by”, held in Rio de Janeiro in May 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schneider, K., Kolomenskiy, D., Deriaz, E. (2013). Is the CFL Condition Sufficient? Some Remarks. In: de Moura, C., Kubrusly, C. (eds) The Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8394-8_9

Download citation

Publish with us

Policies and ethics