Skip to main content

Three-Dimensional Plasma Arc Simulation Using Resistive MHD

  • Chapter
The Courant–Friedrichs–Lewy (CFL) Condition
  • 2704 Accesses

Abstract

We propose a model for simulating the real gas, high current plasma arc in three dimensions based on the equations of resistive MHD. These model equations are discretized using Runge–Kutta Discontinuous Galerkin (RKDG) methods. The Nektar code is used for the simulation which is extended to include Runge–Kutta time stepping, accurate Riemann solvers, and real gas data. The model is then shown to be suitable for simulating a plasma arc by using it to generate a high current plasma arc. Furthermore, the model is used to investigate the effects of the external magnetic field on the arc. In particular, it is shown that the external magnetic field forces the plasma arc to rotate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlitz, L.Z., Garimella, S.V., Chan, S.H.: Gas dynamics and electromagnetic processes in high-current arc plasmas. Part I: model formulation and steady state solutions. J. Appl. Phys. 85(5), 2540–2546 (1999)

    Article  Google Scholar 

  2. Schlitz, L.Z., Garimella, S.V., Chan, S.H.: Gas dynamics and electromagnetic processes in high-current arc plasmas. Part II: effects of external magnetic fields and gassing materials. J. Appl. Phys. 85(5), 2547–2555 (1999)

    Article  Google Scholar 

  3. Lindmayer, M.: Simulation of switching devices based on general transport equation. In: Int. Conference on Electrical Contacts, Zürich (2002)

    Google Scholar 

  4. Barcikowski, F., Lindmayer, M.: Simulations of the heat balance in low-voltage switchgear. In: Int. Conference on Electrical Contacts, Stockholm (2000)

    Google Scholar 

  5. Huguenot, P., Kumar, H., Wheatley, V., Jeltsch, R., Schwab, C.: Numerical simulations of high current arc in circuit breakers. In: 24th International Conference on Electrical Contacts (ICEC), Saint-Malo, France (2008)

    Google Scholar 

  6. Huguenot, P.: Axisymmetric high current arc simulations in generator circuit breakers based on real gas magnetohydrodynamics models. Diss., Eidgenössische Technische Hochschule, ETH, Zürich, No. 17625 (2008)

    Google Scholar 

  7. Kumar, H.: Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. Diss., Eidgenössische Technische Hochschule, ETH, Zürich, No. 18460 (2009)

    Google Scholar 

  8. Goedbloed, H., Poedts, S.: Principles of Magnetohydrodynamics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  9. Hill, T.R., Reed, W.H.: Triangular mesh methods for neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

    Google Scholar 

  10. Cockburn, B.: Advanced numerical approximation of nonlinear hyperbolic equations. In: An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems. Lecture Notes in Mathematics, pp. 151–268. Springer, Berlin (1998)

    Google Scholar 

  11. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sherwin, S.J., Karniadakis, G.E.: A new triangular and tetrahedral basis for high-order(hp) finite element methods. Int. J. Numer. Methods Eng. 123, 3775–3802 (1995)

    Article  MathSciNet  Google Scholar 

  13. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  14. Lin, G., Karniadakis, G.E.: A discontinuous Galerkin method for two-temperature plasmas. Comput. Methods Appl. Mech. Eng. 195, 3504–3527 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wheatley, V., Kumar, H., Huguenot, P.: On the role of Riemann solvers in discontinuous Galerkin methods for magnetohydrodynamics. J. Comput. Phys. 229, 660–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Warburton, T.C., Karniadakis, G.E.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, C.W.: TVD time discretizations. SIAM J. Math. Anal. 14, 1073–1084 (1988)

    Google Scholar 

  19. Cockburn, B., Shu, C.W.: The Runge–Kutta local projection p 1-discontinuous Galerkin method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge C. Schwab, V. Wheatley, M. Torrilhon, and R. Hiptmair for their support and constructive discussions on this work. G.E. Karniadakis provided the authors with the original version of Nektar and ABB Baden provided real gas data for SF6 gas, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeltsch, R., Kumar, H. (2013). Three-Dimensional Plasma Arc Simulation Using Resistive MHD. In: de Moura, C., Kubrusly, C. (eds) The Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8394-8_3

Download citation

Publish with us

Policies and ethics