Skip to main content

Gabor Frames in Finite Dimensions

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Gabor frames have been extensively studied in time-frequency analysis over the last 30 years. They are commonly used in science and engineering to synthesize signals from, or to decompose signals into, building blocks which are localized in time and frequency. This chapter contains a basic and self-contained introduction to Gabor frames on finite-dimensional complex vector spaces. In this setting, we give elementary proofs of the central results on Gabor frames in the greatest possible generality; that is, we consider Gabor frames corresponding to lattices in arbitrary finite Abelian groups. In the second half of this chapter, we review recent results on the geometry of Gabor systems in finite dimensions: the linear independence of subsets of its members, their mutual coherence, and the restricted isometry property for such systems. We apply these results to the recovery of sparse signals, and discuss open questions on the geometry of finite-dimensional Gabor systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Prior to the work of Gabor, von Neumann postulated that the function family which is now referred to as the Gaussian Gabor system is complete [70] (see the respective discussions in [46, 49]).

  2. 2.

    Our treatment is unit-free. The reader may assume that n counts seconds, then m counts hertz, or that n represents milliseconds, in which case m represents megahertz.

  3. 3.

    Here we assume that the receiver knows which coefficients have been erased and which coefficients have been received.

References

  1. Alltop, W.O.: Complex sequences with low periodic correlations. IEEE Trans. Inf. Theory 26(3), 350–354 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, L., Howard, S.D., Searle, S., Calderbank, R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26(2), 283–290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. I: theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balan, R., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl. 12(3), 307–344 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balian, R.: Un principe d’incertitude fort en théorie du signal on en mécanique quantique. C. R. Acad. Sci. Paris 292, 1357–1362 (1981)

    MathSciNet  Google Scholar 

  6. Bastiaans, M.J., Geilen, M.: On the discrete Gabor transform and the discrete Zak transform. Signal Process. 49(3), 151–166 (1996)

    Article  Google Scholar 

  7. Benedetto, J.J.: Harmonic Analysis and Applications. Studies in Advanced Mathematics. CRC Press, Boca Raton (1997)

    Google Scholar 

  8. Benedetto, J.J., Benedetto, R.L., Woodworth, J.T.: Optimal ambiguity functions and Weil’s exponential sum bound. J. Fourier Anal. Appl. 18(3), 471–487 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benedetto, J.J., Donatelli, J.J.: Ambiguity function and frame theoretic properties of periodic zero autocorrelation waveforms. In: IEEE J. Special Topics Signal Process, vol. 1, pp. 6–20 (2007)

    Google Scholar 

  10. Benedetto, J.J., Heil, C., Walnut, D.: Remarks on the proof of the Balian-Low theorem. Annali Scuola Normale Superiore, Pisa (1993)

    Google Scholar 

  11. Benedetto, J.J., Heil, C., Walnut, D.F.: Gabor systems and the Balian-Low theorem. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 85–122. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  12. Björck, G.: Functions of modulus one on Z p whose Fourier transforms have constant modulus. In: A. Haar memorial conference, Vol. I, II, Budapest, 1985. Colloq. Math. Soc. János Bolyai, vol. 49, pp. 193–197. North-Holland, Amsterdam (1987)

    Google Scholar 

  13. Björck, G.: Functions of modulus 1 on Z n whose Fourier transforms have constant modulus, and “cyclic n-roots”. In: Recent Advances in Fourier Analysis and Its Applications, Il Ciocco, 1989. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 315, pp. 131–140. Kluwer Academic, Dordrecht (1990)

    Chapter  Google Scholar 

  14. Brigham, E. (ed.): The Fast Fourier Transform. Prentice Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  15. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  16. Candès, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  17. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris 346(9–10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Casazza, P., Kovačević, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Casazza, P., Pfander, G.E.: Infinite dimensional restricted invertibility, preprint (2011)

    Google Scholar 

  20. Chiu, J., Demanet, L.: Matrix probing and its conditioning. SIAM J. Numer. Anal. 50(1), 171–193 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Christensen, O.: Atomic decomposition via projective group representations. Rocky Mt. J. Math. 26(4), 1289–1313 (1996)

    Article  MATH  Google Scholar 

  22. Christensen, O., Feichtinger, H.G., Paukner, S.: Gabor analysis for imaging. In: Handbook of Mathematical METHODS in Imaging, vol. 3, pp. 1271–1307. Springer, Berlin (2010)

    Google Scholar 

  23. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  24. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied Math. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  26. Demeter, C., Zaharescu, A.: Proof of the HRT conjecture for (2,2) configurations, preprint

    Google Scholar 

  27. Donoho, D.L., Elad, M.: Optimally sparse representations in general (non-orthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2002)

    Article  MathSciNet  Google Scholar 

  28. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  29. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  31. Evans, R.J., Isaacs, I.M.: Generalized Vandermonde determinants and roots of unity of prime order. Proc. Am. Math. Soc. 58, 51–54 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications. CRC Press, Boca Raton (1994)

    Google Scholar 

  33. Feichtinger, H.G., Gröchenig, K.: Gabor frames and time-frequency analysis of distributions. J. Funct. Anal. 146(2), 464–495 (1996)

    Article  Google Scholar 

  34. Feichtinger, H.G., Kozek, W.: Quantization of TF-lattice invariant operators on elementary LCA groups. In: Feichtinger, H.G., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 233–266. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  35. Feichtinger, H.G., Kozek, W., Luef, F.: Gabor analysis over finite abelian groups. Appl. Comput. Harmon. Anal. 26(2), 230–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Feichtinger, H.G., Luef, F.: Wiener amalgam spaces for the Fundamental Identity of Gabor Analysis. Collect. Math. 57, 233–253 (2006) (Extra Volume)

    MathSciNet  Google Scholar 

  37. Feichtinger, H.G., Strohmer, T., Christensen, O.: A group-theoretical approach to Gabor analysis. Opt. Eng. 34(6), 1697–1704 (1995)

    Article  Google Scholar 

  38. Folland, G., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Fornasier, M., Rauhut, H.: Compressive sensing. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 187–228. Springer, Berlin (2011)

    Chapter  Google Scholar 

  40. Frenkel, P.: Simple proof of Chebotarevs theorem on roots of unity, preprint (2004). math.AC/0312398

  41. Gabor, D.: Theory of communication. J. IEE, London 93(3), 429–457 (1946)

    Google Scholar 

  42. Ghobber, S., Jaming, P.: On uncertainty principles in the finite dimensional setting. Linear Algebra Appl. 435(4), 751–768 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Golomb, S., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  44. Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. Inf. Theory 52(1), 255–261 (2006)

    Article  MathSciNet  Google Scholar 

  45. Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 211–231. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  46. Gröchenig, K.: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)

    Google Scholar 

  47. Gröchenig, K.: Uncertainty principles for time-frequency representations. In: Feichtinger, H., Strohmer, T. (eds.) Advances in Gabor Analysis, pp. 11–30. Birkhäuser, Boston (2003)

    Chapter  Google Scholar 

  48. Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10(2), 105–132 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 12, 113–166 (2007)

    Article  MathSciNet  Google Scholar 

  50. Heil, C., Ramanathan, J., Topiwala, P.: Linear independence of time–frequency translates. Proc. Amer. Math. Soc. 124(9), 2787–2795 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Howard, S.D., Calderbank, A.R., Moran, W.: The finite Heisenberg-Weyl groups in radar and communications. EURASIP J. Appl. Signal Process. (Frames and overcomplete representations in signal processing, communications, and information theory), Art. ID 85,685, 12 (2006)

    Google Scholar 

  52. Jaillet, F., Balazs, P., Dörfler, M., Engelputzeder, N.: Nonstationary Gabor Frames. In: SAMPTA’09, Marseille, May 18–22. ARI; Gabor; NuHAG; NHG-coop (2009)

    Google Scholar 

  53. Janssen, A.J.E.M.: Gabor representation of generalized functions. J. Math. Anal. Appl. 83, 377–394 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Janssen, A.J.E.M.: From continuous to discrete Weyl-Heisenberg frames through sampling. J. Fourier Anal. Appl. 3(5), 583–596 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kaiblinger, N.: Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl. 11(1), 25–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Katznelson, Y.: An Introduction to Harmonic Analysis. Dover, New York (1976)

    MATH  Google Scholar 

  58. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36(4), 30 (2009), Art. 19

    Article  MathSciNet  Google Scholar 

  59. Krahmer, F., Pfander, G.E., Rashkov, P.: Uncertainty in time-frequency representations on finite abelian groups and applications. Appl. Comput. Harmon. Anal. 25(2), 209–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Krahmer, F., Mendelson, S., Rauhut, H.: Suprema of chaos processes and the restricted isometry property (2012)

    Google Scholar 

  61. Landau, H.: Necessary density conditions for sampling an interpolation of certain entire functions. Acta Math. 117, 37–52 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  62. Landau, H.: On the density of phase-space expansions. IEEE Trans. Inf. Theory 39(4), 1152–1156 (1993)

    Article  MATH  Google Scholar 

  63. Landau, H., Pollak, H.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 65–84 (1961)

    MathSciNet  MATH  Google Scholar 

  64. Lawrence, J., Pfander, G.E., Walnut, D.F.: Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl. 11(6), 715–726 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  65. Li, S.: Discrete multi-Gabor expansions. IEEE Trans. Inf. Theory 45(6), 1954–1967 (1999)

    Article  MATH  Google Scholar 

  66. Low, F.: Complete sets of wave packets. In: DeTar, C. (ed.) A Passion for Physics—Essay in Honor of Geoffrey Chew, pp. 17–22. World Scientific, Singapore (1985)

    Google Scholar 

  67. Lyubarskii, Y.I.: Frames in the Bargmann space of entire functions. Adv. Sov. Math. 429, 107–113 (1992)

    Google Scholar 

  68. Manjunath, B.S., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI—Special issue on Digital Libraries) 18(8), 837–842 (1996)

    Article  Google Scholar 

  69. Matusiak, E., Özaydın, M., Przebinda, T.: The Donoho-Stark uncertainty principle for a finite abelian group. Acta Math. Univ. Comen. (N.S.) 73(2), 155–160 (2004)

    MATH  Google Scholar 

  70. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1932), (1949) and (1955)

    Google Scholar 

  71. Orr, R.: Derivation of the finite discrete Gabor transform by periodization and sampling. Signal Process. 34(1), 85–97 (1993)

    Article  MATH  Google Scholar 

  72. Pei, S.C., Yeh, M.H.: An introduction to discrete finite frames. IEEE Signal Process. Mag. 14(6), 84–96 (1997)

    Article  Google Scholar 

  73. Pevskir, G., Shiryaev, A.N.: The Khintchine inequalities and martingale expanding sphere of their action. Russ. Math. Surv. 50(5), 849–904 (1995)

    Article  Google Scholar 

  74. Pfander, G.E.: Note on sparsity in signal recovery and in matrix identification. Open Appl. Math. J. 1, 21–22 (2007)

    Article  MathSciNet  Google Scholar 

  75. Pfander, G.E., Rauhut, H.: Sparsity in time-frequency representations. J. Fourier Anal. Appl. 16(2), 233–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Pfander, G.E., Rauhut, H., Tanner, J.: Identification of matrices having a sparse representation. IEEE Trans. Signal Process. 56(11), 5376–5388 (2008)

    Article  MathSciNet  Google Scholar 

  77. Pfander, G.E., Rauhut, H., Tropp, J.A.: The restricted isometry property for time-frequency structured random matrices. Probab. Theory Relat. Fields (to appear)

    Google Scholar 

  78. Pfander, G.E., Walnut, D.: Measurement of time-variant channels. IEEE Trans. Inf. Theory 52(11), 4808–4820 (2006)

    Article  MathSciNet  Google Scholar 

  79. Qiu, S.: Discrete Gabor transforms: the Gabor-Gram matrix approach. J. Fourier Anal. Appl. 4(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  80. Qiu, S., Feichtinger, H.: Discrete Gabor structure and optimal representation. IEEE Trans. Signal Process. 43(10), 2258–2268 (1995)

    Article  Google Scholar 

  81. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform: Algorithms and Applications. Signals and Communication Technology. Springer, Dordrecht (2010)

    Book  MATH  Google Scholar 

  82. Rauhut, H.: Compressive sensing and structured random matrices. In: Fornasier, M. (ed.) Theoretical Foundations and Numerical Methods for Sparse Recovery. Radon Series Comp. Appl. Math., vol. 9, pp. 1–92. de Gruyter, Berlin (2010)

    Google Scholar 

  83. Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in 2(ℝd). Tech. Rep. 95-03, University of Wisconsin, Madison (WI) (1995)

    Google Scholar 

  84. Rudin, W.: Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, vol. 12. Interscience Publishers (a division of John Wiley & Sons), New York–London (1962)

    MATH  Google Scholar 

  85. Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992)

    MathSciNet  MATH  Google Scholar 

  86. Seip, K., Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math. 429, 107–113 (1992)

    MathSciNet  MATH  Google Scholar 

  87. Skolnik, M.: Introduction to Radar Systems. McGraw-Hill, New York (1980)

    Google Scholar 

  88. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  89. Soendergaard, P.L., Torresani, B., Balazs, P.: The linear time frequency analysis toolbox. Int. J. Wavelets Multi. 10(4), 27 pp.

    Google Scholar 

  90. Søndergaard, P.L.: Gabor frames by sampling and periodization. Adv. Comput. Math. 27(4), 355–373 (2007)

    Article  MathSciNet  Google Scholar 

  91. Strohmer, T.: Numerical algorithms for discrete Gabor expansions. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, pp. 267–294. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  92. Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  93. Tao, T.: An uncertainty principle for groups of prime order. Math. Res. Lett. 12, 121–127 (2005)

    MathSciNet  MATH  Google Scholar 

  94. Terras, A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  95. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  96. Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals. IEEE Trans. Inf. Theory 51(3), 1030–1051 (2006)

    Article  MathSciNet  Google Scholar 

  97. Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal. 25(1), 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  98. Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21(3), 207–221 (1990)

    Article  Google Scholar 

  99. Xia, X.G., Qian, S.: On the rank of the discrete Gabor transform matrix. Signal Process. 52(3), 1083–1087 (1999)

    Google Scholar 

Download references

Acknowledgements

The author acknowledges support under the Deutsche Forschungsgemeinschaft (DFG) grant 50292 DFG PF-4 (Sampling of Operators).

Parts of this paper were written during a sabbatical of the author at the Research Laboratory for Electronics and the Department of Mathematics at the Massachusetts Institut of Technology. He is grateful for the support and the stimulating research environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz E. Pfander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pfander, G.E. (2013). Gabor Frames in Finite Dimensions. In: Casazza, P., Kutyniok, G. (eds) Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8373-3_6

Download citation

Publish with us

Policies and ethics