Skip to main content

Quantile Function Models

  • Chapter
  • First Online:
  • 1685 Accesses

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

One of the objectives of quantile-based reliability analysis is to make use of quantile functions as models in lifetime data analysis. Accordingly, in this chapter, we discuss the characteristics of certain quantile functions known in the literature. The models considered are the generalized lambda distribution of Ramberg and Schmeiser, the generalized Tukey lambda family of Freimer, Kollia, Mudholkar and Lin, the four-parameter distribution of van Staden and Loots, the five-parameter lambda family and the power-Pareto model of Gilchrist, the Govindarajulu distribution and the generalized Weibull family of Mudholkar and Kollia.

The shapes of the different systems and their descriptive measures of location, dispersion, skewness and kurtosis in terms of conventional moments, L-moments and percentiles are provided. Various methods of estimation based on moments, percentiles, L-moments, least squares and maximum likelihood are reviewed. Also included are the starship method, the discretized approach specifically introduced for the estimation of parameters in the quantile functions and details of the packages and tables that facilitate the estimation process.

In analysing the reliability aspects, one also needs various functions that describe the ageing phenomenon. The expressions for the hazard quantile function, mean residual quantile function, variance residual quantile function, percentile residual life function and their counter parts in reversed time given in the preceding chapters provide the necessary tools in this direction. Some characterization theorems show the relationships between reliability functions unique to various distributions. Applications of selected models and the estimation procedures are also demonstrated by fitting them to some data on failure times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. Wiley, New York (1992)

    MATH  Google Scholar 

  2. Asquith, W.H.: L-moments and TL-moments of the generalized lambda distribution. Comput. Stat. Data Anal. 51, 4484–4496 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balakrishnan, N., Balasubramanian, K.: Equivalence of Hartley-David-Gumbel and Papathanasiou bounds and some further remarks. Stat. Probab. Lett. 16, 39–41 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bigerelle, M., Najjar, D., Fournier, B., Rupin, N., Iost, A.: Application of lambda distributions and bootstrap analysis to the prediction of fatigue lifetime and confidence intervals. Int. J. Fatig. 28, 233–236 (2005)

    Google Scholar 

  5. Birnbaum, Z.W., Saunders, S.C.: A statistical model for life length of materials. J. Am. Stat. Assoc. 53, 151–160 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, R., Lugosi, G.: Goodness of fit tests based on the kernel density estimator. Scand. J. Stat. 32, 599–616 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandra, N.K., Roy, D.: Some results on reversed hazard rates. Probab. Eng. Inform. Sci. 15, 95–102 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cox, D.R., Oakes, D.: Analysis of Survival Data. Chapman and Hall, London (1984)

    Google Scholar 

  9. Dudewicz, E.J., Karian, A.: The extended generalized lambda distribution (EGLD) system for fitting distribution to data with moments, II: Tables. Am. J. Math. Manag. Sci. 19, 1–73 (1996)

    Google Scholar 

  10. Filliben, J.J.: Simple and robust linear estimation of the location parameter of a symmetric distribution. Ph.D. thesis, Princeton University, Princeton (1969)

    Google Scholar 

  11. Fournier, B., Rupin, N., Bigerelle, M., Najjar, D., Iost, A.: Application of the generalized lambda distributions in a statistical process control methodology. J. Process Contr. 16, 1087–1098 (2006)

    Article  Google Scholar 

  12. Fournier, B., Rupin, N., Bigerelle, M., Najjar, D., Iost, A., Wilcox, R.: Estimating the parameters of a generalized lambda distribution. Comput. Stat. Data Anal. 51, 2813–2835 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Freimer, M., Mudholkar, G.S., Kollia, G., Lin, C.T.: A study of the generalised Tukey lambda family. Comm. Stat. Theor. Meth. 17, 3547–3567 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilchrist, W.G.: Statistical Modelling with Quantile Functions. Chapman and Hall/CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  15. Govindarajulu, Z.: A class of distributions useful in life testing and reliability with applications to nonparametric testing. In: Tsokos, C.P., Shimi, I.N. (eds.) Theory and Applications of Reliability, vol. 1, pp. 109–130. Academic, New York (1977)

    Google Scholar 

  16. Gumbel, E.J.: The maxima of the mean largest value and of the range. Ann Math. Stat. 25, 76–84 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, R.C., Akman, H.O., Lvin, S.: A study of log-logistic model in survival analysis. Biometrical J. 41, 431–433 (1999)

    Article  MATH  Google Scholar 

  18. Hankin, R.K.S., Lee, A.: A new family of non-negative distributions. Aust. New Zeal. J. Stat. 48, 67–78 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haritha, N.H., Nair, N.U., Nair, K.R.M.: Modelling incomes using generalized lambda distributions. J. Income Distrib. 17, 37–51 (2008)

    Google Scholar 

  20. Hartley, H.O., David, H.A.: Universal bounds for mean range and extreme observations. Ann. Math. Stat. 25, 85–99 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hastings, C., Mosteller, F., Tukey, J.W., Winsor, C.P.: Low moments for small samples: A comparative study of statistics. Ann. Math. Stat. 18, 413–426 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  22. Joiner, B.L., Rosenblatt, J.R.: Some properties of the range of samples from Tukey’s symmetric lambda distribution. J. Am. Stat. Assoc. 66, 394–399 (1971)

    Article  MATH  Google Scholar 

  23. Jones, M.C.: On a class of distributions defined by the relationship between their density and distribution functions. Comm. Stat. Theor. Meth. 36, 1835–1843 (2007)

    Article  MATH  Google Scholar 

  24. Karvanen, J., Nuutinen, A.: Characterizing the generalized lambda distribution by L-moments. Comput. Stat. Data Anal. 52, 1971–1983 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karian, A., Dudewicz, E.J.: Fitting Statistical Distributions, the Generalized Lambda Distribution and Generalized Bootstrap Methods. Chapman and Hall/CRC Press, Boca Raton (2000)

    Book  MATH  Google Scholar 

  26. Karian, A., Dudewicz, E.J.: Comparison of GLD fitting methods, superiority of percentile fits to moments in L 2 norm. J. Iran. Stat. Soc. 2, 171–187 (2003)

    Google Scholar 

  27. Karian, A., Dudewicz, E.J.: Computational issues in fitting statistical distributions to data. Am. J. Math. Manag. Sci. 27, 319–349 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Karian, A., Dudewicz, E.J.: Handbook of Fitting Statistical Distributions with R. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  29. King, R.A.R., MacGillivray, H.L.: A starship estimation method for the generalized λ distributions. Aust. New Zeal. J. Stat. 41, 353–374 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. King, R.A.R., MacGillivray, H.L.: Fitting the generalized lambda distribution with location and scale-free shape functionals. Am. J. Math. Manag. Sci. 27, 441–460 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Kupka, J., Loo, S.: The hazard and vitality measures of ageing. J. Appl. Probab. 26, 532–542 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lai, C.D., Xie, M.: Stochastic Ageing and Dependence for Reliability. Springer, New York (2006)

    MATH  Google Scholar 

  33. Lakhany, A., Mausser, H.: Estimating parameters of the generalized lambda distribution. Algo Res. Q. 3, 47–58 (2000)

    Google Scholar 

  34. Lefante, J.J., Jr.: The generalized single hit model. Math. Biosci. 83, 167–177 (1987)

    Article  MATH  Google Scholar 

  35. Mercy, J., Kumaran, M.: Estimation of the generalized lambda distribution from censored data. Braz. J. Probab. Stat. 24, 42–56 (2010)

    Article  MathSciNet  Google Scholar 

  36. Mudholkar, G.S., Kollia, G.D.: The isotones of the test of exponentiality. In: ASA Proceedings, Statistical Graphics, Alexandria (1990)

    Google Scholar 

  37. Mudholkar, G.S., Srivastava, D.K., Kollia, G.D.: A generalization of the Weibull distribution with applications to the analysis of survival data. J. Am. Stat. Assoc. 91, 1575–1583 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nair, N.U., Sankaran, P.G.: Characterization of multivariate life distributions. J. Multivariate Anal. 99, 2096–2107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nair, N.U., Sudheesh, K.K.: Characterization of continuous distributions by properties of conditional variance. Stat. Methodol. 7, 30–40 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nair, N.U., Vineshkumar, B.: L-moments of residual life. J. Stat. Plann. Infer. 140, 2618–2631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Najjar, D., Bigerelle, M., Lefevre, C., Iost, A.: A new approach to predict the pit depth extreme value of a localized corrosion process. ISIJ Int. 43, 720–725 (2003)

    Article  Google Scholar 

  42. Osturk, A., Dale, R.F.: A study of fitting the generalized lambda distribution to solar radiation data. J. Appl. Meteorol. 12, 995–1004 (1982)

    Article  Google Scholar 

  43. Osturk, A., Dale, R.F.: Least squares estimation of the parameters of the generalized lambda distribution. Technometrics 27, 81–84 (1985)

    Article  Google Scholar 

  44. Pregibon, D.: Goodness of link tests for generalized linear models. Appl. Stat. 29, 15–24 (1980)

    Article  MATH  Google Scholar 

  45. Ramberg, J.S., Dudewicz, E., Tadikamalla, P., Mykytka, E.: A probability distribution and its uses in fitting data. Technometrics 21, 210–214 (1979)

    Article  Google Scholar 

  46. Ramberg, J.S., Schmeiser, B.W.: An approximate method for generating symmetric random variables. Comm. Assoc. Comput. Mach. 15, 987–990 (1972)

    MATH  Google Scholar 

  47. Ramberg, J.S., Schmeiser, B.W.: An approximate method for generating asymmetric random variables. Comm. Assoc. Comput. Mach. 17, 78–82 (1974)

    MathSciNet  MATH  Google Scholar 

  48. Ramos-Fernandez, A., Paradela, A., Narajas, R., Albar, J.P.: Generalized method for probability based peptitude and protein identification from tandem mass spectrometry data and sequence data base searching. Mol. Cell. Proteomics 7, 1745–1754 (2008)

    Google Scholar 

  49. Robinson, L.W., Chan, R.R.: Scheduling doctor’s appointment, optimal and empirically based heuristic policies. IIE Trans. 35, 295–307 (2003)

    Article  Google Scholar 

  50. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52, 591–611 (1965)

    MathSciNet  MATH  Google Scholar 

  51. Silver, E.A.: A safety factor approximation based upon Tukey’s lambda distribution. Oper. Res. Q. 28, 743–746 (1977)

    Article  MATH  Google Scholar 

  52. Su, S.: A discretised approach to flexibly fit generalized lambda distributions to data. J. Mod. Appl. Stat. Meth. 4, 408–424 (2005)

    Google Scholar 

  53. Su, S.: Numerical maximum log likelihood estimation for generalized lambda distributions. Comput. Stat. Data Anal. 51, 3983–3998 (2007)

    Article  MATH  Google Scholar 

  54. Su, S.: Fitting single and mixture of the generalized lambda distributions via discretized and maximum likelihood methods: GILDEX in (r). J. Stat. Software 21, 1–22 (2010)

    Article  Google Scholar 

  55. Tarsitano, A.: Comparing estimation methods for the FPLD. J. Probab. Stat. 1–16 (2010)

    Google Scholar 

  56. Tukey, J.W.: The practical relationship between the common transformations of percentages of count and of amount. Technical Report 36, Princeton University, Princeton (1960)

    Google Scholar 

  57. van Dyke, J.: Numerical investigation of the random variable y = c(u λ − (1 − u)λ). Unpublished working paper. National Bureau of Standards, Statistical Engineering Laboratory (1961)

    Google Scholar 

  58. van Staden, P.J., Loots, M.T.: L-moment estimation for the generalized lambda distribution. In: Third Annual ASEARC Conference, New Castle, Australia (2009)

    Google Scholar 

  59. Voinov, V., Nikulin, M.S., Balakrishnan, N.: Chi-Squared Goodness-of-Fit Tests with Applications. Academic, Boston (2013)

    MATH  Google Scholar 

  60. Zimmer, W., Keats, J.B., Wang, F.K.: The Burr XII distribution in reliability analysis. J. Qual. Technol. 20, 386–394 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nair, N.U., Sankaran, P.G., Balakrishnan, N. (2013). Quantile Function Models. In: Quantile-Based Reliability Analysis. Statistics for Industry and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-8361-0_3

Download citation

Publish with us

Policies and ethics