Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 300))

  • 1578 Accesses

Abstract

This note is concerned with the representation constructed by Chinta and Gunnells in (Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23, 2010, 189–215), a representation of the Weyl group of an irreducible root system on an infinite-dimensional algebra over a base field. Chinta and Gunnells in (Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23, 2010, 189–215). The first group of remarks is that this result can, at least, in principle, be constructed and understood from the point of view of the representation theory of local metaplectic groups. The original proof is by means of generators, relations and computer algebra, and so a representation-theoretical proof makes the construction and verification more “natural.” The second group of remarks concerns the application of this local theorem to the global problem of determining the Fourier–Whittaker coefficients of metaplectic theta functions and the closely related problem of the distribution of the values of Gauss sums and their generalizations. These applications are still very preliminary, but the prospects are encouraging.

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The condition that − 1 be an nth power is used in [8, Sect. 3] in the formula γ(j)γ( − j) = q  − 1 for \(j\not\equiv 0 ({\rm mod} n)\) (their notations). This holds true if ( − 1, π) n, F  = 1. If ( − 1, π) n, F  =  − 1, we can replace γ(j) by \({i}^{{j}^{2} }\gamma (j)\) with i 2 =  − 1. From this, one can derive a representation of the same type as [8, Theorem 3.2] when ( − 1, π) n, F  =  − 1.

  2. 2.

    The precise nature of T is unclear. In the case of the cubic theta function and in Wellhausen’s conjectures in the case n = 6, we find a factor (2π)1 − 1 ∕ n Γ(1 ∕ n). If this were also the case when n = 4, the constant of [10, pp. 240,251] which was numerically estimated as 0. 14742376—note that a digit was omitted on p. 240—could be \({(\frac{1} {4}{(2\pi )}^{\frac{3} {4} }\gamma (1/4))}^{2}\) This is numerically \(0.1475425748\ldots \). This is close but not close enough in view of the accuracy of the calculations of [10]. A much better estimate is \(\frac{{(2\pi )}^{3}} {128\Gamma {(1/4)}^{2}}\) which is numerically \(0.1474237606\ldots \). This is very puzzling.

References

  1. W. Banks, A corollary to Bernstein’s theorem and Whittaker functions on the metaplectic group, Math.Research Letters 5(1998) 781–790.

    MATH  Google Scholar 

  2. K. S. Brown, Buildings, Springer-Verlag, 1989.

    Google Scholar 

  3. B. Brubaker, D. Bump, S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases, Ann. of Math. 173(2011)1081–1120.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Brubaker, D. Bump, S. Friedberg, J. Hoffstein, Coefficients of the n-fold theta function and Weyl group multiple Dirichlet series, In: Contributions in Analytic and Algebraic Number Theory, Festschrift for S. J. Patterson, Edd. V. Blomer, P. Mihailescu, Springer Proceedings in Mathematics, Springer-Verlag, 2012,83–95.

    Google Scholar 

  5. W. Banks, D. Bump, D. Lieman, Whittaker–Fourier coefficients of metaplectic Eisenstein series, Compositio Math. 135(2)(2003)153–178.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Casselman, J. Shalika The unramified principal series of p-adic groups, I, The spherical function, Compositio Math. 40(1980) 387–406.

    MathSciNet  MATH  Google Scholar 

  7. W. Casselman, J. Shalika The unramified principal series of p-adic groups, II, The Whittaker function, Compositio Math. 41(1980)207–231.

    MathSciNet  MATH  Google Scholar 

  8. G. Chinta, P. Gunnells, Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc.23(2010)189–215.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Chinta, O. Offen, A metaplectic Casselman–Shalika formula for GL r , Amer. J. Math. (to appear)

    Google Scholar 

  10. C. Eckhardt, S. J. Patterson, On the Fourier coefficients of biquadratic theta series, Proc. London Math.Soc. (3)64(1992)225–264.

    Google Scholar 

  11. H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull.Soc.Math.France 95(1967) 243–309.

    MathSciNet  MATH  Google Scholar 

  12. D. A. Kazhdan, S. J. Patterson, Metaplectic forms, Publ. Math. IHES 59(1984)35–142.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Kubota, Automorphic forms and the reciprocity law in a number field, Kyoto University, 1969.

    Google Scholar 

  14. R.P. Langlands, Euler Products, Yale Mathematical Monographs 1, Yale U.Press, 1971.

    Google Scholar 

  15. P. J. McNamara, Whittaker functions on metaplectic groups, Ph.D.Thesis, MIT, 2010.

    Google Scholar 

  16. P. J. McNamara, Principal series representations of metaplectic groups over local field.

    Google Scholar 

  17. P. J. McNamara, Metaplectic Whittaker Functions and Crystal Bases. Duke Math Journal 156(1)(2011)1–31.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi–simples déployés, Ann. scient. Éc. Norm. Sup. 2(1969)1–62.

    MATH  Google Scholar 

  19. G. Savin, Local Shimura correspondence, Math. Ann. 280(1988)185–190.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Savin, On unramified representations of covering groups, J. reine angew. Math.566(2004)113–134.

    MathSciNet  Google Scholar 

  21. G. Wellhausen, Fourierkoeffizienten von Thetafunktionen sechster Ordnung, Dissertation, Göttingen, 1996, available at: http://webdoc.sub.gwdg.de/ebook/e/1999/mathgoe/preprint/mg.96.15.dvi.Z.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Patterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Patterson, S.J. (2012). Excerpt from an Unwritten Letter. In: Bump, D., Friedberg, S., Goldfeld, D. (eds) Multiple Dirichlet Series, L-functions and Automorphic Forms. Progress in Mathematics, vol 300. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8334-4_14

Download citation

Publish with us

Policies and ethics