Skip to main content

Generalized Harish-Chandra Modules

  • Chapter
Highlights in Lie Algebraic Methods

Part of the book series: Progress in Mathematics ((PM,volume 295))

Abstract

This course is an introduction to algebraic methods in the infinite-dimensional representation theory of semisimple Lie algebras over the complex numbers. In the first section we present basic definitions and theorems concerning Harish-Chandra modules, Fernando–Kac subalgebras associated to \(\mathfrak{g}\)-modules, generalized Harish-Chandra modules, and the special case of weight modules. Work of Kostant allows us to demonstrate that not all simple \(\mathfrak{g}\)-modules are generalized Harish-Chandra modules. In the second section we discuss the Zuckerman derived functors and several of their important properties. We tailor this section to the theory of algebraic constructions of generalized Harish-Chandra modules. In the third section we summarize the main results in our joint work with Ivan Penkov on the classification of generalized Harish-Chandra modules having a “generic” minimal \(\mathfrak{k}\)-type. This classification makes extensive use of the Zuckerman derived functors in the context of pairs \((\mathfrak{g},\mathfrak{k})\) where \(\mathfrak{g}\) is a semisimple Lie algebra and \(\mathfrak{k}\) is a subalgebra of \(\mathfrak{g}\) which is reductive in \(\mathfrak{g}\). We also utilize the theory of the cohomology of the nilpotent radical of a parabolic subalgebra with coefficients in an infinite-dimensional \((\mathfrak{g},\mathfrak{k})\)-module. The crucial point of this section is that we do not assume that \(\mathfrak{k}\) is a symmetric subalgebra of \(\mathfrak{g}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We thank A. Joseph for pointing out that Theorem 1.16 follows also from an earlier result of B. Kostant reproduced in [GQS].

References

  1. D. Arnal and G. Pinczon, On algebraically irreducible representations of the Lie algebra \(\mathfrak{sl}(2)\), J. Math. Phys. 15 (1974), 350–359.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Block, The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra, Adv. Math. 39 (1981), 69–110.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Blattner, Induced and produced representations of Lie algebras, Trans. Am. Math. Soc. 144 (1969), 457–474.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Benkart, D. Britten, and F. Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), 333–353.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Bernstein, I. Gelfand, and S. Gelfand, A certain category of \(\mathfrak{g}\)-modules, Funkc. Anal. Prilozh. 10 (1976), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Britten and F. Lemire, Irreducible representations of A n with a one-dimensional weight space, Trans. Am. Math. Soc. 273 (1982), 509–540.

    MATH  Google Scholar 

  7. A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. 2nd Edition. Mathematical Surveys and Monographs, 67, American Mathematical Society, Providence, RI, 2000.

    Book  MATH  Google Scholar 

  8. J. Dixmier, Enveloping Algebras, American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  9. E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sb. 2 (1952), 349–462 (Russian).

    MathSciNet  MATH  Google Scholar 

  10. T. Enright and N. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. L. Fernando, Lie algebra modules with finite-dimensional weight spaces. I, Trans. Am. Math. Soc. 322 (1990), 757–781.

    MathSciNet  MATH  Google Scholar 

  12. V. Futorny, A generalization of Verma modules and irreducible representations of Lie algebra sl(3), Ukr. Math. J. 38 (1986), 422–427.

    Article  MathSciNet  Google Scholar 

  13. V. Futorny, On irreducible sl(3)-modules with infinite-dimensional weight subspaces, Ukr. Math. J. 41 (1989), 1001–1004.

    MathSciNet  Google Scholar 

  14. Y. Drozd, V. Futorny, and S. Ovsienko, Gelfand–Tsetlin modules over Lie algebra sl(3), Contemp. Math.-Am. Math. Soc. 131 (1992), 23–29.

    Article  MATH  Google Scholar 

  15. V. Guillemin, D. Quillen, and S. Sternberg, The integrability of characteristics, Commun. Pure Appl. Math. 23 (1970), 39–77.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Helgason, Differential Geometry and Symmetric Spaces, American Mathematical Society, Providence, RI, 2001.

    Book  MATH  Google Scholar 

  17. Harish-Chandra, Representations of semisimple Lie groups, II, Trans. Am. Math. Soc. 76 (1954), 26–65.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. G. Kac, Constructing groups associated to infinite-dimensional Lie algebras, Infinite-dimensional groups with applications (Berkeley, CA, 1984), Math. Sci. Res. Inst. Publ., 4, Springer, New York, 1985, pp. 167–216.

    Chapter  Google Scholar 

  19. A. Knapp, Lie Groups: Beyond an Introduction, Birkhäuser, Boston, 2002.

    Google Scholar 

  20. A. Knapp, Advanced Algebra, Birkhäuser, Boston, 2008.

    Book  Google Scholar 

  21. B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101–184.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Kraljević, Representations of the universal covering group of the group SU(n,1), Glas. Mat. Ser. III 28 (1973), 23–72.

    MATH  Google Scholar 

  23. A. Knapp and D. Vogan, Cohomological Induction and Unitary Representations, Princeton University Press, Princeton, 1995.

    Book  MATH  Google Scholar 

  24. O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier 50 (2000), 537–592.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Mazorchuk, Generalized Verma modules, Math. Studies Monograph Series, 8, VNTL Publishers, L’viv, 2000.

    MATH  Google Scholar 

  26. I. Penkov and V. Serganova, Generalized Harish-Chandra modules, Mosc. Math. J. 2 (2002), 753–767.

    MathSciNet  MATH  Google Scholar 

  27. I. Penkov, V. Serganova, and G. Zuckerman, On the existence of (g,k)-modules of finite type, Duke Math. J. 125 (2004), 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Penkov and G. Zuckerman, Generalized Harish-Chandra modules: a new direction in the structure theory of representations, Acta Appl. Math. 81 (2004), 311–326.

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Penkov and G. Zuckerman, A construction of generalized Harish-Chandra modules with arbitrary minimal k-type, Can. Math. Bull. 50 (2007), 603–609.

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Penkov and G. Zuckerman, Generalized Harish-Chandra modules with generic minimal k-type, Asian J. Math. 8 (2004), 795–812.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Penkov and G. Zuckerman, A construction of generalized Harish-Chandra modules for locally reductive Lie algebras, Transform. Groups 13 (2008), 799–817.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Vogan, Representations of Real Reductive Groups, Progress in Math., 15, Birkhäuser, Boston, 1981.

    MATH  Google Scholar 

  33. D. Vogan and G. Zuckerman, Unitary representations with nonzero cohomology, Compos. Math. 53 (1984), 51–90.

    MathSciNet  MATH  Google Scholar 

  34. G. Warner, Harmonic Analysis on Semi-simple Lie Groups, Springer, Berlin, 1972.

    Book  MATH  Google Scholar 

  35. N. Wallach, Real Reductive Groups I, Pure Applied Mathematics, 132, Academic Press, Boston, 1988.

    MATH  Google Scholar 

Download references

Acknowledgement

I thank Sarah Kitchen for taking notes in my lectures and for preparing a preliminary draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg Zuckerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zuckerman, G. (2012). Generalized Harish-Chandra Modules. In: Joseph, A., Melnikov, A., Penkov, I. (eds) Highlights in Lie Algebraic Methods. Progress in Mathematics, vol 295. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8274-3_5

Download citation

Publish with us

Policies and ethics