Skip to main content

Multimodel Differential Games

  • Chapter
The Robust Maximum Principle

Abstract

In this chapter we focus on the construction of robust Nash strategies for a class of multimodel games described by a system of ordinary differential equations with parameters from a given finite set. Such strategies entail the “Robust equilibrium” being applied to all scenarios (or models) of the game simultaneously. The multimodel concept allows one to improve the robustness of the designed strategies in the presence of some parametric uncertainty. The game solution corresponds to a Nash-equilibrium point of this game. In LQ dynamic games the equilibrium strategies obtained are shown to be linear functions of the so-called weighting parameters from a given finite-dimensional vector simplex. This technique permits us to transform the initial game problem, formulated in a Banach space (the control functions are to be found) to a static game given in finite-dimensional space (simplex). The corresponding numerical procedure is discussed. The weights obtained appear in an extended coupled Riccati differential equation. The effectiveness of the designed controllers is illustrated by a two-dimensional missile guidance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that this approach differs from the similar concept developed in van den Broek et al. (2003) and Amato et al. (1998) where the players take into account the game uncertainty represented by a malevolent input which is subject to a cost penalty or a direct bound. Then they used as a base the \(\mathcal{H}^{\infty }\) theory of robust control to design the robust strategies for all players. Here we follow another concept based on the Robust Maximum Principle discussed in the previous chapters.

References

  • Amato, F., Mattei, M., & Pironti, A. (1998), ‘Robust strategies for Nash linear quadratic games under uncertain dynamics’, in Proceedings of the 37th IEEE Conference on Decision and Control, Vol. 2, Austin, TX, pp. 1869–1870.

    Google Scholar 

  • Amato, F., Mattei, M., & Pironti, A. (2002), ‘Guaranteeing cost strategies for linear quadratic differential games under uncertain dynamics’, Automatica 38, 507–515.

    Article  Google Scholar 

  • Basar, T., & Olsder, G. (1982), Dynamic Noncooperative Game Theory, Academic Press, New York.

    MATH  Google Scholar 

  • Fabiano, R.H., Kurdila, A.J., & Kim, C. (1992), ‘Numerical methods for robust control design for distributed parameter systems’, in Proceedings of the 31st IEEE Conference on Decision and Control, Vol. 1, Tucson, AZ, pp. 1172–1177.

    Google Scholar 

  • Fujii, T., & Khargonekar, P.P. (1988), ‘Inverse problems in H control theory and linear-quadratic differential games’, in Proceedings of IEEE 27th Conference on Decision and Control, Vol. 1, Austin, TX, pp. 26–31.

    Chapter  Google Scholar 

  • Ho, Y.C., Bryson, A.E., & Baron, S. (1965), ‘Differential games and optimal pursuit-evasion strategies’, IEEE Trans. Autom. Control 10(4), 385–389.

    Article  MathSciNet  Google Scholar 

  • Hua, X., & Mizukami, K. (1994), ‘Linear-quadratic zero-sum differential games for generalized state space systems’, IEEE Trans. Autom. Control 39, 143–147.

    Article  MathSciNet  Google Scholar 

  • Isaacs, R. (1965), Differential Games, Willey, New York.

    MATH  Google Scholar 

  • Jimenez-Lizarraga, M., & Poznyak, A. (2007), ‘Robust Nash equilibrium in multi-model LQ differential games: Analysis and extraproximal numerical procedure’, Optim. Control Appl. Methods 28, 117–141.

    Article  MathSciNet  Google Scholar 

  • Khalil, H. (1980), ‘Approximation of Nash strategies’, IEEE Trans. Autom. Control AC-25(2), 247–250.

    Article  MathSciNet  Google Scholar 

  • Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., & Mishenko, E.F. (1969), Mathematical Theory of Optimal Processes, Nauka, Moscow (in Russian).

    Google Scholar 

  • Poznyak, A., Duncan, T., Pasik-Duncan, B., & Boltyanski, V. (2002a), ‘Robust maximum principle for multi-model LQ-problem’, Int. J. Control 75(15), 1770–1777.

    Article  MathSciNet  Google Scholar 

  • Shinar, J., & Gutman, S. (1980), ‘Three-dimensional optimal pursuit and evasion with bounded controls’, IEEE Trans. Autom. Control 25(3), 492–496.

    Article  MathSciNet  Google Scholar 

  • Shtessel, Y. (1996), ‘Principle of proportional damages in multiple criteria LQR problem’, IEEE Trans. Autom. Control 41(3), 461–464.

    Article  MathSciNet  Google Scholar 

  • Sim, Y.C., Leng, S.B., & Subramaniam, V. (2000), ‘An all-aspect near-optimal guidance law’, Dyn. Control 1(10), 165–177.

    Article  Google Scholar 

  • Skataric, D., & Petrovic, B. (1998), ‘Recursive approach to Nash games of quasi-singularly perturbed linear systems’, in Proceedings of the 1998 American Control Conference, Vol. 3, Pennsylvania, USA, pp. 1513–1517.

    Google Scholar 

  • Starr, A., & Ho, Y. (1969), ‘Nonzero-sum differential games’, J. Optim. Theory Appl. 3, 184–206.

    Article  MathSciNet  Google Scholar 

  • Turetsky, V., & Shinar, J. (2003), ‘Missile guidance laws based on pursuit–evasion game formulations’, Automatica 39, 607–618.

    Article  MathSciNet  Google Scholar 

  • van den Broek, W.A., Engwerda, J.C., & Schumachar, J.M. (2003), ‘Robust equilibria in indefinite linear-quadratic differential games’, J. Optim. Theory Appl. 119, 565–595.

    Article  MathSciNet  Google Scholar 

  • Yoneyama, J., & Speyer, J.L. (1995), ‘Robust adaptive control problem for linear systems with unknown parameters’, in Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 3, New Orleans, LA, pp. 2277–2282.

    Google Scholar 

  • Zigang, P., & Basar, T. (1993), ‘Multi-time scale zero-sum differential games with perfect state measurements’, in Proceedings of the 32nd IEEE Conference on Decision and Control, Vol. 4, San Antonio, TX, 3366–3371.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Boltyanski .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boltyanski, V.G., Poznyak, A.S. (2012). Multimodel Differential Games. In: The Robust Maximum Principle. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8152-4_14

Download citation

Publish with us

Policies and ethics