Skip to main content

Variational Principles

  • Chapter
  • First Online:
Optimal Control

Part of the book series: Modern Birkhäuser Classics ((MBC))

  • 6156 Accesses

Abstract

The Name “variational principle” is traditionally attached to a law of nature asserting that some quantity is minimized. Examples are Dirichlet’s Principle (the spatial distribution of an electrostatic field minimizes some quadratic functional), Fermat’s Principle (a light ray follows a shortest path), or Hamilton’s Principle of Least Action (the evolution of a dynamical system is an “extremum” for the action functional). These principles are called “variational” because working through their detailed implications entails solving problems in the Calculus of Variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ambrosio, O. Ascenti, and G. BUTAZZO, Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands, J. Math. An. Appl., 142, 1989, pp. 301–316.

    MATH  Google Scholar 

  2. A. V. Arutyunov and S. M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim., 35, 1977, pp. 930–952.

    MathSciNet  Google Scholar 

  3. A. V. Arutyunov, S. M. Aseev, and V. I. Blagodatskikh, First order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints, Russian Acad. Sci. Sb. Math., 79, 1994, pp. 117–139.

    MathSciNet  Google Scholar 

  4. S.M. Aseev, Method of smooth approximations in the theory of necessary conditions for differential inclusions, preprint.

    Google Scholar 

  5. H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, London, 1984.

    MATH  Google Scholar 

  6. J.-P. Aubin, Applied Functional Analysis, Wiley Interscience, New York, 1978.

    Google Scholar 

  7. J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in Advances in Mathematics, Supplementary Studies, Ed. L. Nachbin, 1981, pp. 160–232.

    Google Scholar 

  8. J.-P. Aubin, Viability Theory, Birkhauser, Boston, 1991.

    MATH  Google Scholar 

  9. J.-P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, Berlin, 1984.

    MATH  Google Scholar 

  10. J.-P. Aubin and F. H. Clarke, Monotone invariant solutions to differential inclusions, J. London Math. Soc., 16, 1977, pp. 357–366.

    MATH  MathSciNet  Google Scholar 

  11. J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley-Interscience, New York, 1984.

    MATH  Google Scholar 

  12. J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.

    MATH  Google Scholar 

  13. J. Ball and V. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rat. Mech. Anal., 90, 1985, pp. 325–388.

    MATH  MathSciNet  Google Scholar 

  14. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi Equations, Birkhauser, Boston, 1997.

    MATH  Google Scholar 

  15. G. Barles, Solutions de Viscosity des Equations de Hamilton-Jacobi, vol. 17 of Mathymatiques et Applications, Springer, Paris, 1994.

    Google Scholar 

  16. E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Comm. Partial Differential Eq., 15, 1990, pp. 1713–1742.

    MATH  MathSciNet  Google Scholar 

  17. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

    Google Scholar 

  18. S. H. Benton, The Hamilton Jacobi Equation: A Global Approach, Academic Press, New York, 1977.

    MATH  Google Scholar 

  19. L. D. Berkovitz, Optimal Control Theory, Springer Verlag, New York, 1974.

    MATH  Google Scholar 

  20. D. Bessis, Y. S. Ledyaev and R. B. Vinter, Dualization of the Euler and Hamiltonian Inclusions, Nonlinear Anal., to appear.

    Google Scholar 

  21. Billingsley, Convergence of Probability Measures, John Wiley and Sons, New York, 1968.

    Google Scholar 

  22. V. G. Boltyanskii, The maximum principle in the theory of optimal processes (in Russian), Dokl. Akad. Nauk SSSR, 119, 1958, pp. 1070–1073.

    MathSciNet  Google Scholar 

  23. J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc., 303, 1987, pp. 517–527.

    MATH  MathSciNet  Google Scholar 

  24. J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications, SIAM Rev., to appear.

    Google Scholar 

  25. A. E. Bryson and Y: C. Ho, Applied Optimal Control, Blaisdell, New York, 1969, and (in revised addition) Halstead Press, New York, 1975.

    Google Scholar 

  26. R. Bulirsch, F. Montrone, and H. J. Pesch, Abort landing in the presence of windshear as a minimax optimal problem, Part 1: Necessary conditions and Part 2: Multiple shooting and homotopy, J. Opt. Theory Appl., TO, 1991, pp. 1–23, 223–254.

    Google Scholar 

  27. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer Lecture Notes in Mathematics, vol. 580, Springer Verlag, New York, 1977.

    Google Scholar 

  28. L. Cesari, Optimization - Theory and Applications: Problems with Ordinary Differential Equations, Springer Verlag, New York, 1983.

    MATH  Google Scholar 

  29. F. H. Clarke, Necessary conditions for nonsmooth problems in optimal control and the calculus of variations, Ph.D. dissertation, University of Seattle, W, 1973.

    Google Scholar 

  30. F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205, 1975, pp. 247–262.

    MATH  MathSciNet  Google Scholar 

  31. F. H Clarke, Necessary conditions for a general control problem in Calculus of Variations and Control Theory, Ed. D. L. Russell, Academic Press, New York, 1976, pp. 259–278.

    Google Scholar 

  32. F. H. Clarke, The maximum principle under minimal hypotheses, SIAM J. Control Optim., 14, 1976, pp. 1078–1091.

    MATH  Google Scholar 

  33. F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res., 1, 1976, pp. 165–174.

    MATH  MathSciNet  Google Scholar 

  34. F. H. Clarke, Optimal solutions to differential inclusions, J. Optim. Theory Appl., 19, 1976, pp. 469–478.

    MATH  Google Scholar 

  35. F. H. Clarke, The applicability of the Hamilton-Jacobi verification technique, Proceedings of the Tenth IFIP Conference, New York, 1981, Eds. R.F. Drenick and F. Kozin, System Modeling and Optimization Ser., 38, Springer Verlag, New York, 1982, pp. 88–94.

    Google Scholar 

  36. F. H. Clarke, Perturbed optimal control problems, IEEE Trans. Automat. Control, 31, 1986, pp. 535–542.

    MATH  MathSciNet  Google Scholar 

  37. F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization, CBMS/NSF Regional Con£ Ser. in Appl. Math. vol. 57, SIAM, Philadelphia, 1989.

    Google Scholar 

  38. F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983; reprinted as vol. 5 of Classics in AppliedMathematics, SIAM, Philadelphia, 1990.

    Google Scholar 

  39. F. H. Clarke, A decoupling principle in the calculus of variations, J. Math. Anal. Appl., 172, 1993, pp. 92–105.

    MATH  MathSciNet  Google Scholar 

  40. F. H. Clarke and Y. S. Ledyaev, Mean value inequalities, Proc. Amer. Math. Soc., 122, 1994, pp. 1075–1083.

    MATH  MathSciNet  Google Scholar 

  41. F. H. Clarke and Y. S. Ledyaev, Mean value inequalities in Hilbert space, Trans. Amer. Math. Soc., 344, 1994, pp. 307–324.

    MATH  MathSciNet  Google Scholar 

  42. F. H Clarke and P. D. Loewen, The value function in optimal control: Sensitivity, controllability and time-optimality, SIAM J. Control Optim., 24, 1986, pp. 243–263.

    Google Scholar 

  43. F. H Clarke and R. B. Vinter, Local optimality conditions and Lipschitzian solutions to the Hamilton-Jacobi equation, SIAM J. Control Optim., 21, 1983, pp. 856–870.

    Google Scholar 

  44. F. H Clarke and R. B. Vinter, On the conditions under which the Euler equation or the maximum principle hold, Appl. Math. Optim., 12, 1984, pp. 73–79.

    Google Scholar 

  45. F. H. Clarke and R. B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc., 289, 1985, pp. 73–98.

    MATH  MathSciNet  Google Scholar 

  46. F. H Clarke and R. B. Vinter, Existence and regularity in the small in the calculus of variations, J. Differential Eq., 59, 1985, pp. 336–354.

    Google Scholar 

  47. F. H Clarke and R. B. Vinter, Regularity of solutions to variational problems with polynomial Lagrangians, Bull. Polish Acad. Sci., 34, 1986, pp. 73–81.

    Google Scholar 

  48. F. H Clarke and R. B. Vinter, The relationship between the maximum principle and dynamic programming, SIAM J. Control Optim., 25, 1987, pp. 1291–1311.

    Google Scholar 

  49. F. H Clarke and R. B. Vinter, Optimal multiprocesses, SIAM J. Control Optim., 27, 1989, pp. 1072–1091.

    Google Scholar 

  50. F. H Clarke and R. B. Vinter, Applications of optimal multiproceases, SIAM J. Control Optim., 27, 1989, pp. 1048–1071.

    Google Scholar 

  51. F. H Clarke and It. B. Vinter, A regularity theory for problems in the calculus of variations with higher order derivatives, Trans. Amer. Math. Soc., 320, 1990, pp. 227–251.

    Google Scholar 

  52. F. H Clarke and It. B. Vinter, Regularity properties of optimal controls, SIAM J. Control Optim., 28, 1990, pp. 980–997.

    Google Scholar 

  53. F. H. Clarke, Y. S. Ledyaev, It. J. Stern and P. It. Wolenski, Qualitative properties of trajectories of control systems: A survey, J. Dynam. Control Systems, 1, 1995, pp. 1–47.

    Google Scholar 

  54. F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Non-smooth Analysis and Control Theory, Graduate Texts in Mathematics vol. 178, Springer Verlag, New York, 1998.

    Google Scholar 

  55. F. H Clarke, P. D. Loewen and It. B. Vinter, Differential inclusions with free time, Ann. de l’Inst. Henri Poincare (An. Nonlin.), 5, 1989, pp. 573–593.

    Google Scholar 

  56. M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton- Jacobi equations, Trans. Amer. Math. Soc., 277, 1983, pp. 1–42.

    MATH  MathSciNet  Google Scholar 

  57. K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin, 1992.

    Google Scholar 

  58. A. L. Dontchev and W. W. Hager, A new approach to Lipschitz continuity in state constrained optimal control, Syst. and Control Letters, to appear.

    Google Scholar 

  59. A. L. Dontchev and 1. Kolmanovsky, On regularity of optimal control, in Recent Developments in Optimization, Proceedings of the French-German Conference on Optimization, Eds. It. Durier, C. Michelot, Lecture Notes in Economics and Mathematical Systems, 429, Springer Verlag, Berlin, 1995, pp. 125–135.

    Google Scholar 

  60. A. J. Dubovitskii and A. A. Milyutin, Extremal problems in the presence of restrictions, U.S.S.R. Comput. Math. and Math. Phys., 5, 1965, pp. 1–80.

    Google Scholar 

  61. N. Dunford and J. T. Schwartz, Linear Operators. Part I. General Theory, Interscience, London, 1958, reissued by Wiley-Interscience (Wiley Classics Library), 1988.

    Google Scholar 

  62. I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47, 1974, pp. 324–353.

    MATH  MathSciNet  Google Scholar 

  63. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.), 1, 1979, pp. 443–474.

    Google Scholar 

  64. M. M. A. Ferreira and R. B. Vinter, When is the maximum principle for state-constrainted problems degenerate?, J. Math. Anal. Appl., 187, 1994, pp. 432–467.

    Google Scholar 

  65. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer Verlag, New York, 1975.

    MATH  Google Scholar 

  66. W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer Verlag, New York, 1993.

    MATH  Google Scholar 

  67. H. Frankowska, The maximum principle for an optimal solution to a differential inclusion with end point constraints, SIAM J. Control Optim., 25, 1987, pp. 145–157.

    MATH  MathSciNet  Google Scholar 

  68. H. Frankowska, Lower semicontinuous solutions of the Hamilton-Jacobi equation, SIAM J. Control Optim., 31, 1993, pp. 257–272.

    MATH  MathSciNet  Google Scholar 

  69. H. Frankowska and M. Plaskacz, Semicontinuous solutions of Hamilton-Jacobi equations with state constraints, in Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, J. Schauder Center for Nonlinear Studies, vol. 2, Eds. J. Andres, L. Gorniewicz, and P. Nistri, 1998, pp. 145–161.

    Google Scholar 

  70. H. Frankowska and R. B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems, J. Optim. Theory Appl., to appear.

    Google Scholar 

  71. H. Frankowska, M. Plaskacz, and T. R.Zezuchowski, Measurable viability theorems and the Hamilton-Jacobi-Bellman equation, J. Diff. Eq., to appear.

    Google Scholar 

  72. G. N. Galbraith, Applications of variational analysis to optimal trajectories and nonsmooth Hamilton-Jacobi theory, Ph.D. dissertation, University of Seattle, W, 1999.

    Google Scholar 

  73. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, NJ, 1983.

    MATH  Google Scholar 

  74. M. R. Gonzalez, Sur 1’existence d’une solution maxunale de 1’equation de Hamilton Jacobi, C. R. Acad. Sci., 282, 1976, pp. 1287–1280.

    MATH  Google Scholar 

  75. R. V. Gamkrelidze, Optimal control processes with restricted phase coordinates (in Russian), I.av. Akad. Nauk SSSR, Ser. Math., 24, 1960, pp. 315–356.

    Google Scholar 

  76. R. V. Gamkrelidze, On sliding optimal regimes, Soviet Math. Dokl., 3, 1962, pp. 559–561.

    MATH  Google Scholar 

  77. G. Haddad, Monotone trajectories of differential inclusions with memory, Israel J. Math., 39, 1981, pp. 83–100.

    MATH  MathSciNet  Google Scholar 

  78. W. W. Hager, Lipschitz continuity for constrained processes, SIAM J. Control and Optim., 17, 1979, pp. 321–338.

    MATH  MathSciNet  Google Scholar 

  79. H. Halkin, On the necessary condition for the optimal control of nonlinear systems, J. Analyse Math., 12, 1964, pp. 1–82.

    MATH  MathSciNet  Google Scholar 

  80. H. Halkin, Implicit functions and optimization problems without continuous differentiability of the data, SIAM J. Control, 12, 1974, pp. 239–236.

    MathSciNet  Google Scholar 

  81. H Hermes and J. P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.

    Google Scholar 

  82. A. D. Ioffe, Approximate subdifferentials and applications I: The i fnite dimensional theory, Trans. Amer. Math. Soc., 281, 1984, pp. 389–416.

    MATH  MathSciNet  Google Scholar 

  83. A. D. Ioffe, Necessary conditions in nonsmooth optimization, Math. Oper. Res., 9, 1984, pp. 159–189.

    MATH  MathSciNet  Google Scholar 

  84. A. D. Ioffe, Proximal analysis and approximate subdifferentials, J. London Math. Soc., 41, 1990, pp. 175–192.

    MATH  MathSciNet  Google Scholar 

  85. A. D. Ioffe, A Lagrange multiplier rule with small convex-valued subdifferentials for non-smooth problems of mathematical programming involving equality and non-functional constraints, Math. Prog., 72, 1993, pp. 137–145.

    MathSciNet  Google Scholar 

  86. A. D. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization, Trans. Amer. Math. Soc., 349, 1997, pp. 2871–2900.

    MATH  MathSciNet  Google Scholar 

  87. A. D. Ioffe and R. T. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems, Cale. Var. Partial Differential Eq., 4, 1996, pp. 59–87.

    MATH  MathSciNet  Google Scholar 

  88. A. D. Ioffe and V. M Tcxomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 1979.

    Google Scholar 

  89. B. Kasxosz and S. Lojasiewicz, A maximum principle for generalized control systems, Nonlinear Anal. Theory Meth. Appl., 19, 1992, pp. 109–130.

    Google Scholar 

  90. P. Koxotovic and M. Arcak, Constructive nonlinear control: Progress in the 90s, Automatica, to appear.

    Google Scholar 

  91. A. Y. Kruger, Properties of generalized differentials, Siberian Math. J., 26, 1985, pp. 822–832.

    MATH  Google Scholar 

  92. G. Lebourg, Valeur moyenne pour gradient generalise, Comptes Rondus de l’Academie des Sciences de Paris, 281, 1975, pp. 795–797.

    MATH  MathSciNet  Google Scholar 

  93. G. Leitman, The Calculus of Variations and Optimal Control, Mathematical Concepts and Methods in Science and Engineering, vol. 24, Plenum Press, New York, 1981.

    Google Scholar 

  94. P. D. LOEWEN, Optimal Control via Nonsmooth Analysis, CRM Proc. Lecture Notes vol. 2, American Mathematical Society, Providence, RI, 1993.

    Google Scholar 

  95. P. D. Loewen, A mean value theorem for lFrechet subgradients, Non-linear Anal. Theory Meth. Appl., 23, 1995, pp. 1365–1381.

    MathSciNet  Google Scholar 

  96. P. D. Loewen and R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J. Control Optim., 32, 1994, pp. 442–470.

    MATH  MathSciNet  Google Scholar 

  97. P. D. Loewen and R. T. Rockafellar, New necessary conditions for the generalized problem of Bolza, SIAM J. Control Optim., 34, 1996, pp. 1496–1511.

    MATH  MathSciNet  Google Scholar 

  98. P. D. Loewen and R. B. Vinter, Pontryagin-type necessary conditions for differential inclusion problems, Syst. Control Letters, 9, 1987, pp. 263–265.

    MATH  MathSciNet  Google Scholar 

  99. K. Malanowski, On the regularity of solutions to optimal control problems for systems linear with respect to control variable, Arch. Auto. i Telemech., 23, 1978, pp. 227–241.

    MATH  MathSciNet  Google Scholar 

  100. K. Malanowski and H. Maurer, Sensitivity analysis for state constrained optimal control problems, Discrete Contin. Dynam. Syst., 4, 1998, pp. 241–272.

    MATH  MathSciNet  Google Scholar 

  101. D. Q Mayne and E. Polak, An exact penalty function algorithm for control problems with control and terminal equality constraints, Parts I and II, J. Optim. Theory Appl., 32, 1980, pp. 211–246, 345–363.

    Google Scholar 

  102. A. A. Milyutin and N. P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society (Translations of Mathematical Monographs), Providence, RI, 1998.

    Google Scholar 

  103. M. Morari and E. Zafiriou, Robust Process Control, Prentice Hall, Englewood Cliffs, 1989.

    Google Scholar 

  104. B. S. Mordukhovich, Maximum principle in the optimal time control problem with non-smooth constraints, Prikl. Math. Mech., 40, 1976, pp. 1004–1023.

    Google Scholar 

  105. B. S. Mordukhovich, Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet Math. Doklady, 22, 1980, pp. 526–530.

    MATH  Google Scholar 

  106. B. S. Mordukhovich, Complete characterizaton of openness, metric regularity, and Lipschitz properties of multifunctions, Trans. Amer. Math. Soc., 340, 1993, pp. 1–36.

    MATH  MathSciNet  Google Scholar 

  107. B. S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl., 183, 1994, pp. 250–282.

    MATH  MathSciNet  Google Scholar 

  108. B. S. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for non-convex differential inclusions, SIAM J. Control Optim., 33, 1995, pp. 882–915.

    MATH  MathSciNet  Google Scholar 

  109. M. Nagumo, Uber die lage der integralkurven gewohnlicher differentialgleichungen, Proc. Phys. Math. Soc. Japan, 24, 1942, pp. 551–559.

    MATH  MathSciNet  Google Scholar 

  110. L. W. Neustadt, A general theory of extremals, J. Comp. and Sci., 3, 1969, pp. 57–92.

    MATH  MathSciNet  Google Scholar 

  111. L. W. Neustadt, Optimization, Princeton University Press, Princeton, NJ, 1976.

    MATH  Google Scholar 

  112. D. Offin, A Hamilton-Jacobi approach to the differential inclusion problem, M.Sc. Thesis, University of British Columbia, Canada, 1979.

    Google Scholar 

  113. E. Polak, Optimization: Algorithms and Consistent Approximations, Springer Verlag, New York, 1997.

    MATH  Google Scholar 

  114. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mischenko, The Mathematical Theory of Optimal Processes, K. N. Tririgoff, Transl., Ed. L. W. Neustadt, Wiley, New York, 1962.

    Google Scholar 

  115. R. Pytlak, Runge-Kutta based procedure for optimal control of differential-algebraic equations, J. Optim. Theory Appl., 97, 1998, pp. 675–705.

    MATH  MathSciNet  Google Scholar 

  116. R. Pytlak and R. B. Vinter, A feasible directions algorithm for optimal control problems with state and control constraints: Convergence analysis, SIAM J. Control Optim., 36, 1998, pp. 1999–2019.

    MATH  MathSciNet  Google Scholar 

  117. R. J. Qin and T. A. Badgwell, An overview of industrial model predictive control applications, Proceedings of the Workshop on Nonlinear Model Predictive Control, Ascona, Switzerland, 1998.

    Google Scholar 

  118. F. RAMPAZZO and R. B. VINTER, Degenerate optimal control problems with state constraints, SIAM J. Control Optim., to appear.

    Google Scholar 

  119. A. E. Rapaport and R. B. Vinter, Invariance properties of time measurable differential inclusions and dynamic programming, J. Dynam. Control Syst., 2, 1996, pp. 423–448.

    MATH  MathSciNet  Google Scholar 

  120. R. T. Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange, Pacific. J. Math., 33, 1970, pp. 411–428.

    MATH  MathSciNet  Google Scholar 

  121. R. T. Rockafellar, Existence and duality theorems for convex problems of Bolza, Trans. Amer. Math. Soc., 159, 1971, pp. 1–40.

    MATH  MathSciNet  Google Scholar 

  122. R. T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Adv. in Math., 15, 1975, pp. 312–333.

    MATH  MathSciNet  Google Scholar 

  123. R. T. Rockafellar, Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimzation, Math. Oper. Res., 6, 1982, pp. 424–436.

    MathSciNet  Google Scholar 

  124. R. T. Rockafellar, Equivalent subgradient versions of Hamiltonian and Euler-Lagrange equations in variational analysis, SIAM J. Control Optim., 34, 1996, pp. 1300–1314.

    MATH  MathSciNet  Google Scholar 

  125. R. T. Rockafellar and R. J: B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften vol. 317, Springer Verlag, New York, 1998.

    Google Scholar 

  126. J. Rosenblueth and R. B. Vinter, Relaxation procedures for time delay systems, J. Math. Anal. and Appl., 162, 1991, pp. 542–563.

    MATH  MathSciNet  Google Scholar 

  127. J. D. L. Rowland and R. B. Vinter, Dynamic optimization problems with free time and active state constraints, SIAM J. Control Optim., 31, 1993, pp. 677–697.

    MATH  MathSciNet  Google Scholar 

  128. G. N. Silva and R. B. Vinter, Necessary conditions for optimal impulsive control problems, SIAM J. Control Optim., 35, 1998, 1829–1846.

    MathSciNet  Google Scholar 

  129. G. V. Smirnov, Discrete approximations and optimal solutions to differential inclusion, Cybernetics, 27, 1991, pp. 101–107.

    MATH  MathSciNet  Google Scholar 

  130. H. M Soner, Optimal control with state-space constraints, SIAM J. Control Optim., 24, 1986, pp. 552–561.

    Google Scholar 

  131. A. I. Subbotin, Generalized Solutions of First-Order PDEs, Birkhauser, Boston, 1995.

    Google Scholar 

  132. H. J. Sussmann, Geometry and optimal control, in Mathematical Control Theory, Ed. J. Baillieul and J. C. Willems, Springer Verlag, New York, 1999, pp. 140–194.

    Google Scholar 

  133. H. J. Sussmann and J. C. Willems, 300 years of optimal control: from the brachystochrone to the maximum principle, IEEE Control Syst. Mag., June 1997.

    Google Scholar 

  134. L. Tonelli, Sur une methode direct du calcul des variations, Rend. Circ. Math. Palermo, 39, 1915, pp. 233–264.

    Google Scholar 

  135. L. Tonelli, Fondamenti di Calcolo delle Variazioni vol. 1 and 2, Zanichelli, Bologna, 1921, 1923.

    Google Scholar 

  136. J. L. Troutman, Variational Calculus with Elementary Convexity, Springer Verlag, New York, 1983.

    MATH  Google Scholar 

  137. H. D. Tuan, On controllability and extremality in nonconvex differential inclusions, J. Optim. Theory Appl., 85, 1995, pp. 435–472.

    MATH  MathSciNet  Google Scholar 

  138. R. B. Vinter, New results on the relationship between dynamic programming and the maximum principle, Math. Control Signals and Syst., 1, 1988, pp. 97–105.

    MATH  MathSciNet  Google Scholar 

  139. R. B. Vinter, Convex duality and nonlinear optimal control, SIAM J. Control Optim., 31, 1993, pp. 518–538.

    MATH  MathSciNet  Google Scholar 

  140. R. B. Vinter and G. Pappas, A maximum principle for non-smooth optimal control problems with state constraints, J. Math. Anal. Appl., 89, 1982, pp. 212–232.

    MATH  MathSciNet  Google Scholar 

  141. It. B. Vinter and F. L. Pereira, A maximum principle for optimal processes with discontinuous trajectories, SIAM J. Control Optim., 26, 1988, pp. 205–229.

    Google Scholar 

  142. It. B. Vinter and P. Wolenski, Hamilton-Jacobi theory for optimal control problems with data measurable in time, SIAM J. Control Optim., 28, 1990, pp. 1404–1419.

    Google Scholar 

  143. It. B. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems, SIAM J. Control Optim., 35, 1997, pp. 56–77.

    Google Scholar 

  144. It. B. Vinter and H. Zheng, The extended Euler Lagrange condition for nonconvex variational problems with state constraints, Trans. Amer. Math. Soc., 350, 1998, pp. 1181–1204.

    Google Scholar 

  145. R. B. Vinter and H. Zheng, Necessary conditions for free end-time, measurably time dependent optimal control problems with state constraints, J. Set- Valued Anal., to appear.

    Google Scholar 

  146. D. H. Wagner, Survey of measurable selection theorems, SIAM. J. Control and Optim., 15, 1977, pp. 859–903.

    MATH  Google Scholar 

  147. J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

    MATH  Google Scholar 

  148. J. Warga, Derivate containers, inverse functions and controllability, in Calculus of Variations and Control Theory, Ed. D. L. Russell, Academic Press, New York, 1976.

    Google Scholar 

  149. J. Warga, Fat homeomorphisms and unbounded derivate containers, J. Math. Anal. Appl., 81, 1981, pp. 545–560.

    MATH  MathSciNet  Google Scholar 

  150. J. Warga, Optimization and controllability without differentiability assumptions, SIAM J. Control Optim., 21, 1983, pp. 239–260.

    MathSciNet  Google Scholar 

  151. P. R. Wolenski and Y. Z Huang, Proximal analysis and the minimal time function, SIAM J. Control Optim., to appear.

    Google Scholar 

  152. L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, 1991.

    Google Scholar 

  153. J. Zabzyk, Mathematical Control Theory: An Introduction, Birkhauser, Boston, 1992.

    Google Scholar 

  154. D. Zagrodny, Approximate mean value theorem for upper subderivatives, Nonlinear Anal. Theory Meth. and Appl., 12, 1988, pp. 1413–1428.

    MATH  MathSciNet  Google Scholar 

  155. V. Zeidan, Second order admissible directions and generalized coupled points for optimal control problems, Nonlinear Anal. Theory Meth. and Appl., 25, 1996, pp. 479–507.

    MathSciNet  Google Scholar 

  156. Q. J. Zxu, Necessary optimality conditions for nonconvex differential inclusion with endpoint constraints, J. Differential Eq., 124, 1996, pp. 186–204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vinter, R. (2010). Variational Principles. In: Optimal Control. Modern Birkhäuser Classics. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8086-2_3

Download citation

Publish with us

Policies and ethics