Skip to main content

Discretization of Coefficient Control Problems with a Nonlinear Cost in the Gradient

  • Chapter
  • First Online:
Book cover Integral Methods in Science and Engineering, Volume 2

Abstract

We consider a control problem of optimal design consisting in mixing two electric phases in order to minimize a given objective function. For simplicity, we assume that the two phases are isotropic, although the results still hold true for more general composites (see [CaEtAl08]). Mathematically the problem can be formulated as follows.

Let Ω be a bounded smooth open set in \(\mathbb{R}^N, N \geq 2, \), let α, β, k be positive constants such that \(\alpha < \beta, k < |\Omega|\), and let f be in L 2(Ω). We look for a measurable set ω ⊂ Ω with |ω| = k such that the solution u of

$$\begin{cases}-{\rm div} (\alpha\chi_\omega + \beta \chi_{\Omega\backslash\omega})\nabla u = f \ \ {\rm in} \ \Omega,\\ u \in H^1_0(\Omega),\end{cases}$$

minimizes the functional

$$J(u) = \int_\Omega F(\nabla u)dx + G(u),$$

where \(F : \mathbb{R}^N \to \mathbb{R}^N\) has a growth of order two at infinity and \(G : H^1_0(\Omega)\to \mathbb{R}\) is sequentially continuous in the weak topology of \(H^1_0(\Omega).\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaire, G., Gutiérrez, S.: Optimal design in small amplitude homogenization. ESAIM:M2AN, 41, 543-574 (2007).

    Article  MATH  Google Scholar 

  2. Bellido, J.C., Pedregal, P.: Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing. Discr. Contin. Dyn. Syst., 8, 967-982 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  3. Casado-Díaz, J., Couce-Calvo, J., Martín-Gómez, J.D.: Relaxation of a control problem in the coefficients with a functional of quadratic growth in the gradient. SIAM J. Control Optim., 47, 1428-1459 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  4. Casado-Díaz, J., Couce-Calvo, J., Luna-Laynez, M., Martín-Gómez, J.D.: Optimal design problems for a non-linear cost in the gradient: numerical results. Applicable Anal., 87, 1461-1487 (2008).

    Article  MATH  Google Scholar 

  5. Grabovsky. Y.: Optimal design for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math., 27, 683-704 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  6. Lipton, R., Velo., A.P.: Optimal design of gradient fields with applications to electrostatics, inNonlinear Partial Differential Equations and Their Applications, Vol. XIV, Cioranescu, D., Lions, J.-L., eds., North-Holland, Amsterdam (2002), 509-532.

    Google Scholar 

  7. Lurie, K.A., Cherkaev, A.V.: Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. Roy. Soc. Edinburgh A, 104, 21-38 (1986).

    MATH  MathSciNet  Google Scholar 

  8. Meyers, N.G.: An L p-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17, 189-206 (1963).

    MATH  MathSciNet  Google Scholar 

  9. Murat, F.: Un contre-example pour le problème du contrôle dans les coefficients. C.R. Acad. Sci. Paris A, 273, 708-711 (1971).

    MATH  MathSciNet  Google Scholar 

  10. Murat, F.: Théorèmes de non existence pour des problèmes de contrôle dans les coefficients. C.R. Acad. Sci. Paris A, 274, 395-398 (1972).

    MATH  MathSciNet  Google Scholar 

  11. Murat, F., Tartar, L.: Calculus of variations and homogenization, in Topics in the Mathematical Modelling of Composite Materials, Cherkaev, L., Kohn, R.V., eds., Birkhaüser, Boston (1998), 139-174.

    Google Scholar 

  12. Pedregal, P.: Optimal design in two-dimensional conductivity for a general cost depending on the field. Arch. Rational Mech. Anal., 182, 367-385 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  13. Tartar, L.: Estimations fines de coefficients homogénéisés, in Research Notes in Math., 125, Pitman, London (1985), 168-187.

    Google Scholar 

  14. Tartar, L.: Remarks on optimal design problems, in Calculus of Variations, Homogenization and Continuum Mechanics, Buttazzo, G., Bouchitte, G., Suquet, P., eds., World Scientific, Singapore (1994), 279-296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Casado-Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Casado-Díaz, J., Couce-Calvo, J., Luna-Laynez, M., Martín-Gómez, J.D. (2010). Discretization of Coefficient Control Problems with a Nonlinear Cost in the Gradient. In: Constanda, C., Pérez, M. (eds) Integral Methods in Science and Engineering, Volume 2. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4897-8_6

Download citation

Publish with us

Policies and ethics