Skip to main content

Notes on the Self-Reducibility of the Weil Representation and Higher-Dimensional Quantum Chaos

  • Chapter
  • 984 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 279))

Summary

In these notes we discuss the self-reducibility property of the Weil representation. We explain how to use this property to obtain sharp estimates of certain higher-dimensional exponential sums which originate from the theory of quantum chaos. As a result, we obtain the Hecke quantum unique ergodicity theorem for a generic linear symplectomorphism A of the torus \({\mathbb{T} = \mathbb{R}}^{2N}/{\mathbb{Z}}^{2N}.\)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J. and Moy A., Unipotent representations and reductive dual pairs over finite fields. Trans. Amer. Math. Soc. 340, no. 1, (1993), 309–321

    Article  MATH  MathSciNet  Google Scholar 

  2. Berry M.V., Regular and irregular semiclassical wavefunctions. J. Phys. A 10, no. 12 (1977), 2083–2091.

    Article  MathSciNet  Google Scholar 

  3. Berry M.V., Semiclassical Mechanics of regular and irregular motion. Les Houches Lecture Series Session XXXVI, eds. G. Iooss, R.H.G. Helleman and R. Stora, North Holland, Amsterdam (1983), 171–271.

    Google Scholar 

  4. Bouzouina A. and De Biévre S., Equipartition of the eigenstates of quantized ergodic maps on the torus. Commun. Math. Phys. 178 (1996), 83–105.

    Article  MATH  Google Scholar 

  5. Chebotarev N.G., Determination of the density of the set of primes corresponding to a given class of permutations, Izv. Akad. Nauk., 17 (1923), 205–230.

    Google Scholar 

  6. Connes A., Algebres et geometrie differentielle. C. R. Acad. Sci. Paris Ser. A-B 290 (1980), no. 13, A599–A604.

    Google Scholar 

  7. Deligne P., Metaplectique. A letter to Kazhdan (1982).

    Google Scholar 

  8. Faure F., Nonnenmacher S. and De Bievre S. Scarred eigenstates for quantum cat maps of minimal periods. Commun. Math. Phys. 239 (2003), 449–492.

    Article  MATH  Google Scholar 

  9. Gérardin P., Weil representations associated to finite fields. J. Algebra 46, no. 1, (1977), 54–101.

    Google Scholar 

  10. Gurevich S., Weil representation, Deligne’s sheaf, and proof of the Kurlberg-Rudnick conjecture. Ph.D. Thesis (submitted: March 2005)

    Google Scholar 

  11. Gurevich S. and Hadani R., On Hannay-Berry equivariant quantization of the Torus. arXiv:math-ph/0312039 (2001).

    Google Scholar 

  12. Gurevich S. and Hadani R., On Hannay-Berry equivariant quantization of higher-dimensional tori. arXiv:math-ph/0403036 (2002).

    Google Scholar 

  13. Gurevich S. and Hadani R., Proof of the Kurlrberg-Rudnick rate conjecture. Comptes Rendus Mathematique, Volume 342, Issue 1, (2006), Pages 69–72.

    Google Scholar 

  14. Gurevich S. and Hadani R., Hecke quantum unique ergodicity for the higher-dimensional Hannay-Berry models. arXiv:math-ph/0403036 (2004).

    Google Scholar 

  15. Gurevich S. and Hadani R., Heisenberg realizations, eigenfunctions and proof of the Kurlberg-Rudnick Supremum Conjecture. arXiv:math-ph/0511036 (2005).

    Google Scholar 

  16. Gurevich S. and Hadani R., The geometric Weil representation. Selecta Mathematica, New Series, Birkhäuser Basel (Accepted: Dec. 2006).

    Google Scholar 

  17. Gurevich S. and Hadani R., Quantization of symplectic vector spaces over finite fields. arXiv:0705.4556 (2005).

    Google Scholar 

  18. Hannay J.H. and Berry M.V., Quantization of linear maps on the torus—Fresnel diffraction by a periodic grating. Physica D1 (1980), 267–291.

    MathSciNet  Google Scholar 

  19. Heath-Brown R., Private communication. Montreal, July 2005.

    Google Scholar 

  20. Heller J.E., Bound-state eigenstates of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53 (1984), 1515–1518.

    Article  MathSciNet  Google Scholar 

  21. Howe R., Invariant theory and duality for classical groups over finite fields with applications to their singular representation theory, preprint, Yale University.

    Google Scholar 

  22. Howe R., On the character of Weil’s representation. Trans. Amer. Math. Soc. 177 (1973), 287–298.

    MATH  MathSciNet  Google Scholar 

  23. Kelmer D., Arithmetic Quantum Unique Ergodicity for Symplectic Linear Maps of the Multidimensional Torus. math-ph/0510079.

    Google Scholar 

  24. Kaplan L. and Heller E.J. Measuring scars of periodic orbits. Phys. Rev. E 59 (1999).

    Google Scholar 

  25. Kurlberg P. and Rudnick Z., Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. Jour. 103 (2000), 47–78.

    Article  MATH  MathSciNet  Google Scholar 

  26. Marklof J., Arithmetic quantum chaos. Encyclopedia of Mathematical Physics, eds. J.-P. Francoise, G.L. Naber and Tsou S.T. Oxford: Elsevier, Volume 1 (2006), 212–220.

    Google Scholar 

  27. Rudnick Z., The quantized cat map and quantum ergodicity. Lecture at the MSRI conference—Random Matrices and their Applications, Berkeley, June 7–11, 1999.

    Google Scholar 

  28. Rudnick Z., On quantum unique ergodicity for linear maps of the torus. European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., 202, Birkhäuser, Basel. (2001), 429–437.

    Google Scholar 

  29. Rieffel M.A., Non-commutative tori—a case study of non-commutative differentiable manifolds, Contemporary Math. 105 (1990), 191–211.

    MathSciNet  Google Scholar 

  30. Sarnak P., Arithmetic quantum chaos. The Schur lectures, 1992, Tel Aviv. Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan (1995) 183–236.

    Google Scholar 

  31. Shnirelman A. I., Ergodic properties of eigenstates. Uspehi Mat. Nauk 29, no. 6(180) (1974), 181–182.

    Google Scholar 

  32. Srinivasan B., Weil representations of finite classical groups. Invent. Math. 51, no. 2, 143–153 (1979).

    Google Scholar 

  33. von Neumann J., Mathematical foundations of quantum mechanics. Princeton University Press (1955).

    Google Scholar 

  34. Weil A., Sur certains groupes d’operateurs unitaires. Acta Math. 111 (1964) 143–211.

    Article  MATH  MathSciNet  Google Scholar 

  35. Weyl H., Gruppentheorie und Quantenmechanik. 1st edition Hirzel, Leipzig (1928).

    Google Scholar 

  36. Weyl H., The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamgar Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gurevich, S., Hadani, R. (2010). Notes on the Self-Reducibility of the Weil Representation and Higher-Dimensional Quantum Chaos. In: Ceyhan, Ö., Manin, Y.I., Marcolli, M. (eds) Arithmetic and Geometry Around Quantization. Progress in Mathematics, vol 279. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4831-2_7

Download citation

Publish with us

Policies and ethics