Skip to main content

Reconstruction Problems for Graphs, Krawtchouk Polynomials, and Diophantine Equations

  • Chapter
  • First Online:
Structural Analysis of Complex Networks
  • 2838 Accesses

Abstract

We give an overview about some reconstruction problems in graph theory, which are intimately related to integer roots of Krawtchouk polynomials. In this context, Tichy and the author recently showed that a binary Diophantine equation for Krawtchouk polynomials only has finitely many integral solution. Here, this result is extended. By using a method of Krasikov, we decide the general finiteness problem for binary Krawtchouk polynomials within certain ranges of the parameters.

MSC2000: Primary 11D45; Secondary 33C05, 33C45, 39B72

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilu Y, Tichy RF (2000) The Diophantine equation f(x) = g(y). Acta Arith 95:261–288

    MATH  MathSciNet  Google Scholar 

  2. Bondy JA (1991) A graph reconstruction manual. In: Keedwell AD (ed) Surveys in combinatorics. LMS-Lecture Note Series, vol 166. Cambridge University Press, Cambridge, pp 221–252

    Google Scholar 

  3. Dujella A, Tichy RF (2001) Diophantine equations for second-order recursive sequences of polynomials. Q J Math 52:161–169

    Article  MATH  MathSciNet  Google Scholar 

  4. Ellingham MN (1996) Vertex-switching reconstruction and folded cubes. J Combin Theory B 66:361–364

    Article  MATH  MathSciNet  Google Scholar 

  5. Ellingham MN, Royle GF (1992) Vertex-switching reconstruction of subgraph numbers and triangle-free graphs. J Combin Theory B 54:167–177

    Article  MATH  MathSciNet  Google Scholar 

  6. Krasikov I (1994) Applications of balance equations to vertex switching reconstruction. J Graph Theory 18:217–225.

    Article  MATH  MathSciNet  Google Scholar 

  7. Krasikov I (1996) Degree conditions for vertex switching reconstruction. Discrete Math 160:273–278

    Article  MATH  MathSciNet  Google Scholar 

  8. Krasikov I (2001) Nonnegative quadratic forms and bounds on orthogonal polynomials. J Approx Theory 111:31–49

    Article  MATH  MathSciNet  Google Scholar 

  9. Krasikov I (2003) Discrete analogues of the Laguerre inequality. Anal Appl (Singap) 1:189–197

    Article  MATH  MathSciNet  Google Scholar 

  10. Krasikov I, Litsyn S (1996) On integral zeros of Krawtchouk polynomials. J Combin Theory A 74:71–99

    Article  MATH  MathSciNet  Google Scholar 

  11. Krasikov I, Litsyn S (2001) Survey of binary Krawtchouk polynomials, Codes and association schemes. (Piscataway, NJ, 1999), DIMACS Ser Discrete Math Theor Comput Sci 56:199–211. American Mathematical Society, Providence, RI

    Google Scholar 

  12. Krasikov I, Roditty Y (1992) Switching reconstruction and Diophantine equations. J Combin Theory B 54:189–195

    Article  MathSciNet  Google Scholar 

  13. Krasikov I, Roditty Y (1994) More on vertex-switching reconstruction. J Combin Theory B 60:40–55

    Article  MATH  MathSciNet  Google Scholar 

  14. Koekoek R, Swarttouw RF (1998) The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Report 98-17, Delft, Netherlands

    Google Scholar 

  15. Levenshtein V (1995) Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces. IEEE Trans Inf Theory 41:1303–1321

    Article  MATH  MathSciNet  Google Scholar 

  16. Siegel CL (1929) Über einige Anwendungen Diophantischer Approximationen. Abh Preuss Akad Wiss Math Phys Kl 1:209–266

    Google Scholar 

  17. Stanley RP (1985) Reconstruction from vertex-switching. J Combin Theory B 38:132–138

    Article  MATH  MathSciNet  Google Scholar 

  18. Stoll T (2008) Complete decomposition of Dickson-type recursive polynomials and related Diophantine equations. J Number Theory 128:1157–1181

    Article  MATH  MathSciNet  Google Scholar 

  19. Stoll T (2008) Decomposition of perturbed Chebyshev polynomials. J Comput Appl Math 214:356–370

    Article  MATH  MathSciNet  Google Scholar 

  20. Stoll T, Tichy RF (2003) Diophantine equations for continuous classical orthogonal polynomials. Indagat Math 14:263–274

    Article  MATH  MathSciNet  Google Scholar 

  21. Stoll T, Tichy RF (2005) Diophantine equations involving general Meixner and Krawtchouk polynomials. Quaest Math 28:105–115

    MATH  MathSciNet  Google Scholar 

  22. Szegő G (1975) Orthogonal polynomials, vol. 23, 4th edn. American Mathematical Society Colloquium Publications, Providence, RI

    Google Scholar 

Download references

Acknowledgments

The author is a recipient of an APART-fellowship of the Austrian Academy of Sciences at the University of Waterloo, Canada. He also wishes to express his gratitude to I. Krasikov for several helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stoll, T. (2011). Reconstruction Problems for Graphs, Krawtchouk Polynomials, and Diophantine Equations. In: Dehmer, M. (eds) Structural Analysis of Complex Networks. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4789-6_11

Download citation

Publish with us

Policies and ethics