Skip to main content

Ecological Networks: Structure, Interaction Strength, and Stability

  • Chapter
  • First Online:

The fundamental building blocks of any ecosystem, the food webs, which are assemblages of species through various interconnections, provide a central concept in ecology. The study of a food web allows abstractions of the complexity and interconnectedness of natural communities that transcend the specific details of the underlying systems. For example, Fig. 1 shows a typical food web, where the species are connected through their feeding relationships. The top predator, Heliaster (starfish) feeds on many gastropods like Hexaplex, Morula, Cantharus, etc., some of whom predate on each other [129]. Interactions between species in a food web can be of many types, such as predation, competition, mutualism, commensalism, and ammensalism (see Section 1.1, Fig. 2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abrams, P. et al. The role of indirect effects in food webs. In Food Webs: Integration of Patterns and Dynamics (eds G.A. Polis & K.O. Winemiller), 371–395, Chapman & Hall, New York (1996)

    Google Scholar 

  2. Allesina, S. and Bodini, A. Who dominates whom in the ecosystem? Energy flow and bottlenecks and cascading extinctions. J. Theor. Biol., 230, 351–358 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bascompte, J. and Melian, C. J. Simple trophic modules for complex food webs. Ecology, 86, 2868–2873 (2005)

    Article  Google Scholar 

  4. Bascompte, J. et al. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl Acad. Sci. USA, 102, 5443–5447 (2005)

    Article  Google Scholar 

  5. Bastolla, U., Lassig, M., Manrubia, S. C. and Valleriani, A. Diversity patterns from ecological models at dynamical equilibrium. J. Theor. Biol., 212, 11–34 (2001)

    Article  Google Scholar 

  6. Berlow, E. L. et al. Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol., 73, 585–598 (2004)

    Article  Google Scholar 

  7. Berlow, E. L., Brose U., and Martinez, N. D. The “Goldilocks factor” in food webs. Proc. Natl. Acad. Sci. USA, 105, 4079–4080 (2008)

    Article  Google Scholar 

  8. Bhattacharyya, S. and Bhattacharya, D. K. Pest control through viral diseases: mathematical modeling and analysis. J. Theor. Biol., 238, 177–197 (2006)

    Article  MathSciNet  Google Scholar 

  9. Caldarelli, G., Higgs, P. G. and McKane, A. J. Modelling coevolution in multi-species communities, J. Theor. Biol., 193, 345–358 (1998)

    Article  Google Scholar 

  10. Camacho, J. et al. Quantitative analysis of the local structure of food webs. J. Theor. Biol., 246, 260–268 (2007)

    Article  MathSciNet  Google Scholar 

  11. Case, T. J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. USA, 87, 9610–9614 (1990)

    Article  MATH  Google Scholar 

  12. Chen, X. and Cohen, J. E. Global stability, local stability and permanence in model food webs. J. Theor. Biol., 212, 223–305 (2001)

    Article  Google Scholar 

  13. Cohen, J. E., Briand, F. and Newman, C. M. Community food webs. Biomathematics, 20, Springer-Verlag, Berlin (1990)

    Google Scholar 

  14. Dambacher, J. M. et al. Relevance of community structure in assessing indeterminacy of ecological predictions. Ecology, 83, 1372–1385 (2002)

    Article  Google Scholar 

  15. Dambacher, J. M. et al. Qualitative stability and ambiguity in model ecosystems. Am. Nat., 161, 876–888 (2003)

    Article  Google Scholar 

  16. De Ruiter, P., Neutel, A. M. and Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269, 1257–1260 (1995)

    Article  Google Scholar 

  17. Drossel, B. and McKane, A. J. Modelling food webs. In Handbook of Graphs and Networks (eds S. Bornholdt & H. G. Schuster), 218–247, Wiley-VCH, Berlin (2003)

    Google Scholar 

  18. Dunne, J. A. et al. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett., 5, 558–567 (2002)

    Article  Google Scholar 

  19. Emmerson, M. C. and Raffaelli, D. Predator-prey body size, interaction strength and the stability of a real food web. J. Anim. Ecol., 73, 399–409 (2004)

    Article  Google Scholar 

  20. Garcia-Domingo, J. L. and Saldana, J. Food-web complexity emerging from ecological dynamics on adaptive networks. J. Theor. Biol., 247, 819–826 (2007)

    Article  MathSciNet  Google Scholar 

  21. Garcia-Domingo, J. L. and Saldana, J. Effects of heterogeneous interaction strengths on food web complexity. Oikos, 117, 336–343 (2008)

    Article  Google Scholar 

  22. Ghosh, S., Bhattacharyya, S. and Bhattacharya, D. K. Role of viral infection in pest control: a mathematical study. Bull. Math. Biol., 69, 2649–2691 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gross, T. et al. Long food chains are in general chaotic. Oikos, 109, 135–144 (2005)

    Article  Google Scholar 

  24. Hastings, A. and Powell, T. Chaos in a 3-species food-chain. Ecology, 72, 896–903 (1991)

    Article  Google Scholar 

  25. Jansen, V. A. A. and Kokkoris, G. D. Complexity and stability revisited, Ecol. Lett., 6, 498–502 (2003)

    Article  Google Scholar 

  26. Keitt, T. H. Network theory: an evolving approach to landscape conservation. Ecological and Modeling for Resource Managers, Springer Berlin, 125–134, (2003)

    Google Scholar 

  27. Keitt, T. H. and Economo, E. P. Species diversity in neutral metacommunities: a network approach. Ecol. Lett., 11(1), 52–62, (2008)

    Google Scholar 

  28. Kokkoris, G. D. et al. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol., 71, 362–371 (2002)

    Article  Google Scholar 

  29. Kokkoris, G. D., Jansen, V. A. A., Loreau, M. and Troumbis, A. Y. Variability in interaction strength and implications for biodiversity. J. Anim. Ecol., 71, 362–371 (2002)

    Article  Google Scholar 

  30. Kondoh, M. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? J. Theor. Biol., 238, 646–651 (2006)

    Article  MathSciNet  Google Scholar 

  31. Krause, A. E. et al. Compartments revealed in food-web structure. Nature, 426, 282–285 (2003)

    Article  Google Scholar 

  32. Laska, M. S. and Wootton, J. T. Theoretical concepts and empirical approaches for measuring interaction strength. Ecology, 79, 461–476 (1998)

    Article  Google Scholar 

  33. Law, R. and Morton, R. D. Permanence and the assembly of ecological communities. Ecology, 77, 762–775 (1996)

    Article  Google Scholar 

  34. Lawton, J. H. Food webs. In Ecological Concepts: the Contribution of Ecology to an Understanding of the Natural World (ed. J. Cherret), 43–78, Blackwell, Boston (1990)

    Google Scholar 

  35. Levines, R. Evolution in Changing Environments: Some Theoretical Explanations. Princeton University Press, Princeton, NJ, USA (1968)

    Google Scholar 

  36. Logofet, D. O. Stronger-than-Lyapunov notions of matrix stability, or how ‘flowers’ help solving problems in mathematical ecology. Linear Algebra and Its Applications, 398, 75–100 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Loreau, M.. A new look at the relationship between diversity and stability. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds M. Loreau, S. Naeem and P. Inchausti), 79–91, Oxford University Press, Oxford (2002)

    Google Scholar 

  38. MacArthur, R. H. and Levines, R. Strong, or weak interactions? Tansactions of the Connecticut Academy of Arts and Sciences, 44, 177–188 (1972)

    Google Scholar 

  39. Martinez, N. D. et al. Diversity, complexity, and persistence in large model ecosystems. In Ecological Networks, Linking Structure to Dynamics in Food Webs (eds Pascual, M. and Dunne, J. A.) Santa Fe Inst., Studies in the sciences of complexity. Oxford Univ. Press, 163–185 (2006)

    Google Scholar 

  40. May, R. M. Will a large complex system be stable? Nature, 238, 413–414 (1972)

    Article  Google Scholar 

  41. May, R. M. Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, USA(1973)

    Google Scholar 

  42. McCann, K. S. The diversity–stability debate. Nature, 405, 228–233 (2000)

    Article  Google Scholar 

  43. McCann, K. et al. Weak trophic interactions and the balance of nature. Nature, 395, 794–798 (1998)

    Article  Google Scholar 

  44. McCann, K. and Hastings, A. Re-evaluating the omnivory–stability relationship in food-webs. Proc. Roy. Soc. of London, Series B, 264, 1249–1254 (1998)

    Article  Google Scholar 

  45. Memmott, J.. Biodiversity loss and ecological network structure. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. M. Pascual and J.A. Dunne), Oxford University Press, Oxford (2006)

    Google Scholar 

  46. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science, 298, 824–827 (2002)

    Article  Google Scholar 

  47. Montoya, J. M., Pimm, S. L. and Sole, R. V. Ecological networks and their fragility. Nature, 442, 259–264 (2006)

    Article  Google Scholar 

  48. Montoya, J. M. and Sole, R. V. Topological properties of food webs: from real data to community assembly models. Oikos, 102, 614–622 (2003)

    Article  Google Scholar 

  49. Navarrete, S. A. and Berlow, E. L. Variable interaction strengths stabilize marine community patterns. Ecol. Lett., 9, 526–536 (2006)

    Article  Google Scholar 

  50. Navarrete, S. A. and Castilla, J. C. Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos, 100, 251–262 (2003)

    Article  Google Scholar 

  51. Otto, S. B., Berlow, E. L., Rand, N. E., Smiley, J. and Brose, U. Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology, 89, 134–144 (2008)

    Article  Google Scholar 

  52. Paine, R. T. Food web complexity and species diversity. Am. Nat., 100, 65–75 (1966)

    Article  Google Scholar 

  53. Paine, R. T. A note on trophic complexity and community stability. Am. Nat., 103(929), 91–93 (1969)

    Article  Google Scholar 

  54. Paine, R. T. Food webs - road maps of interactions or grist for theoretical development. Ecology, 69, 1648–1654 (1988)

    Article  Google Scholar 

  55. Paine, R. T. A. Conversation on refining the concept of keystone species. Conservation Biology, 9(4), 962–964 (1995)

    Article  Google Scholar 

  56. Petchey, O. L., Beckerman, A. P, Riede, J. O. and Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. USA, 105, 4191–4196 (2008)

    Article  Google Scholar 

  57. Peterson, E. E., Theobald, D. M. and Ver Hoef, J. M. Geostatistical modeling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow. Freshwater Biology, 52, 267–279 (2007)

    Article  Google Scholar 

  58. Pimm, S. L. The complexity and stability of ecosystems. Nature, 307, 321–326 (1984)

    Article  Google Scholar 

  59. Polis, G. A. Stability is woven by complex webs. Nature, 395, 744–745 (1998)

    Article  Google Scholar 

  60. Post, W. M. and Pimm, S. L. Community assembly and food web stability, Math. Biosci., 64, 169–192 (1983)

    Article  MATH  Google Scholar 

  61. Quince, C. et al. Topological structure and interaction strengths in model food webs. Ecol. Model., 187, 389–412 (2005)

    Article  Google Scholar 

  62. Raffaelli, D. G. Trends in research on shallow water food webs. Journal of Experimental Marine Biology and Ecology, 250, 223–232 (2000)

    Article  Google Scholar 

  63. Rooney, N. et al. Structural asymmetry and the stability of diverse food webs. Nature, 442, 265–269 (2006)

    Article  Google Scholar 

  64. Sabo, J. L. et al. Population dynamics and food web structure - predicting measurable food web properties with minimal detail and resolution. In Dynamic Food Webs, Multispecies Assemblages, Ecosystem Development and Environmental Change (eds. de Ruiter, P. C. et al.) Theor. Ecol. Ser., Academic Press, 437–452 (2005)

    Google Scholar 

  65. Schmitz, D. C. and Simberlo, D. Biological invasions: a growing threat. Issues in Sci. & Tech. 13, 33–40 (1997)

    Google Scholar 

  66. Singh, B. K., Subba Rao, J., Ramaswamy, R. and Sinha, S. The role of heterogeneity on the spatiotemporal dynamics of hostparasite metapopulation. Ecol. Model., 180, 435–443 (2004)

    Article  Google Scholar 

  67. Singh, B. K., Chattopadhyay, J. and Sinha, S. The role of virus infection in a simple phytoplankton zooplankton system. J. Theor. Biol., 231, 153–166 (2004)

    Article  MathSciNet  Google Scholar 

  68. Sole, R. V., Alonso, D. and McKane, A. self-organized instability in complex ecosystems. Phil. Trans. Roy. Soc. Lond. Ser., B-Biol. Sci. 357, 667–681 (2002)

    Article  Google Scholar 

  69. Stone, L. Biodiversity and habitat destruction - a comparative study of model forest and coral-reef ecosystems. Proc. Natl. Acad. Sci. USA, 261, 381–388 (1995)

    Google Scholar 

  70. Tilman, D.. Habitat destruction and the extinction debt. Nature, 371, 65–66 (1994).

    Article  Google Scholar 

  71. Uchida, S. and Drossel, B. Relation between complexity and stability in food webs with adaptive behavior. J. Theor. Biol., 247, 713–722 (2007)

    Article  MathSciNet  Google Scholar 

  72. Uchida, S., Drossel, B. and Brose, U. The structure of food webs with adaptive behaviour. Ecol. Model., 206, 263–276 (2007)

    Article  Google Scholar 

  73. Urban, D. L., Goslee, S., Pierce K. B. and Lookingbill, T.R. Extending community ecology to landscapes. Ecoscience, 9, 200–212 (2002)

    Google Scholar 

  74. Williams, R. J. and Martinez, N. D. Simple rules yield complex food webs. Nature, 404, 180–183 (2000)

    Article  Google Scholar 

  75. Woodward, G. and Hildrew, A. G. Body-size constraints on niche overlap and intraguild predation in a complex food web. J. Anim. Ecol., 71, 1063–1074 (2002)

    Article  Google Scholar 

  76. Wootton, J. T. Estimates and tests of per-capita interaction strength: diet, abundance, and impact of intertidally-foraging birds. Ecological Monographs, 67, 45–64 (1997)

    Article  Google Scholar 

  77. Wootton, J. T. and Emmerson M. Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst., 36, 419–444 (2005)

    Article  Google Scholar 

  78. Yodzis, P. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology, 69, 508–515 (1988)

    Article  Google Scholar 

  79. Yodzis, P. and Innes, S. Body-size and consumer-resource dynamics. Am. Nat., 139, 1151–1175 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the anonymous referees for constructive, critical comments, and to the Department of Science and Technology, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samit Bhattacharyya or Somdatta Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bhattacharyya, S., Sinha, S. (2009). Ecological Networks: Structure, Interaction Strength, and Stability. In: Ganguly, N., Deutsch, A., Mukherjee, A. (eds) Dynamics On and Of Complex Networks. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4751-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4751-3_4

  • Published:

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4750-6

  • Online ISBN: 978-0-8176-4751-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics