Skip to main content

The Big Friendly Giant: The Giant Component in Clustered Random Graphs

  • Chapter
  • First Online:
Dynamics On and Of Complex Networks

Network theory is a powerful tool for describing and modeling complex systems having applications in widelydiffering areas including epidemiology [16], neuroscience [34], ecology [20] and the Internet [26]. In its beginning, one often compared an empirically given network, whose nodes are the elements of the system and whose edges represent their interactions, with an ensemble having the same number of nodes and edges, the most popular example being the random graphs introduced by Erdos and Renyi [11]. As the field matured, it became clear that the naive model above needed to be refined, due to the observation that real-world networks often differ significantly from the Erdos–Renyi random graphs in having a highly heterogenous non-Poisson degree distribution [5, 15] and in possessing a high level of clustering [33].

Methods for generating random networks with arbitrary degree distributions and for calculating their statistical properties are now well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More accurately: ∀ε > 0 Pr(C > ε) → 0 as N →∞.

  2. 2.

    In Section 2.2, when C > 0, we will need a similar observation; namely, that the probability to have a cycle of length four, that is not composed of two triangles, scales as N −1 and hence can also be neglected for large N.

  3. 3.

    p is usually a function of N, p(N).

  4. 4.

    The idea is basically as follows: find the eigenvalues of the matrix \(L = D - A\), where A is the graph adjacency matrix and D is a diagonal matrix with the degree of node j at the D jj -th entry; the multiplicity of the eigenvalue 0 is the number of connected components.

  5. 5.

    Also known respectively as site, bond and joint site+bond percolation.

  6. 6.

    Durret [10] gives a nice critique on the claim that “the internet is robust.. after dilution (in a certain parameters regime) we still get a GC.” In the regime referred to, “if all 6 billion people were initially connected then after the removal only 36 people can check their email.”

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs, Proc. of the 32nd Annu. ACM Symposium on Theory of Computing (2000)

    Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User's Guide, 3rd edition, SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  3. Andersson, H.: Limit theorems for a random graph epidemic model, Ann. Appl. Probab. 8, 1331–1349 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artzy-Randrup, Y., Stone, L.: Generating uniformly distributed random networks, Phys. Rev. E. 72 (5): 056708 (2005)

    Article  MathSciNet  Google Scholar 

  5. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks, Science 286, 509512 (1999)

    MathSciNet  Google Scholar 

  6. Bender, E. A., Canfield, E. R.: The asymptotic number of labeled graphs with given degree sequences, J. Combin. Theory A 24, 296307 (1978)

    Article  MathSciNet  Google Scholar 

  7. Berchenko, Y., Artzy-Randrup, Y., Teicher, M., Stone, L.: The emergence and the size of the giant component in clustered random graphs with a given degree distribution, submitted.

    Google Scholar 

  8. Bollobas, B.: Random Graphs, 2nd edition, Academic Press, New York (2001)

    MATH  Google Scholar 

  9. Callaway, D. S., Newman, M. E. J., Strogatz, S. H., Watts, D. J.: Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett. 85, 5468 (2000)

    Article  Google Scholar 

  10. Durrett, R.: Random Graph Dynamics, Cambridge U. Press, Cambridge, UK (2006)

    Book  Google Scholar 

  11. Erdos, P., Renyi, A.: On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 1761 (1960).

    MathSciNet  Google Scholar 

  12. Gomez-Gardenes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks, Phys Rev Lett. 98 (3):034101 17358685 (2007)

    Article  Google Scholar 

  13. Gotelli, N. J., Entsminger, G. L.: Swap and fill algorithms in null model analysis: Rethinking the Knight's Tour, Oecologia 129, 281–291 (2001)

    Article  Google Scholar 

  14. Guillaume, J. L., Latapy, M.: A realistic model for complex networks, (2003) cond-mat/0307095.

    Google Scholar 

  15. Jeong, H., Mason, S., Barabasi, A.-L., Oltvai, Z. N.: Lethality and centrality in protein networks, Nature 411, 4142 (2001)

    Article  Google Scholar 

  16. Keeling, M. J.: The effects of local spatial structure on epidemiological invasion. Proc. R. Soc. London B 266, 859–867 (1999)

    Article  Google Scholar 

  17. McGraw, P. N., Menzinger, M.: Analysis of nonlinear synchronization dynamics of oscillator networks by Laplacian spectral methods, Phys. Rev. E 75, 027104 (2007)

    MathSciNet  Google Scholar 

  18. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence, Random Structures and Algorithms 6, 161179 (1995)

    Article  MathSciNet  Google Scholar 

  19. Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput. 7, 295 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Montoya, J. M., Sole, R. V.: Small world patterns in food webs, J. Theor. Bio., 214, 405–412 (2002)

    Article  Google Scholar 

  21. Newman, M. E. J.: The structure and function of complex networks, SIAM Review 45, 167 (2003)

    MATH  Google Scholar 

  22. Newman, M. E. J.: Properties of highly clustered networks, Phys. Rev. E 68, 026121 (2003)

    Google Scholar 

  23. Newman, M. E. J.: Random graphs as models of networks. In: Bornholdt, S., Schuster, H. G. (eds.) Handbook of Graphs and Networks, Wiley-VCH, Berlin (2003)

    Google Scholar 

  24. Newman, M. E. J., Strogatz, S. H., Watts, D. J.: Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E. 64, (2001)

    Google Scholar 

  25. Park, J., Newman, M. E. J.: Solution for the properties of a clustered network, Phys. Rev. E 72, 026136 (2005)

    Google Scholar 

  26. Pastor-Satorras, R., Vasquez, A., Vespignnani, A.: Dynamical and correlation properties of the internet, Phys. Rev. Lett. 87, 258701 (2001)

    Article  Google Scholar 

  27. Redner, S.: A Guide to First-Passage Processes, Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  28. Serrano, M. A., Boguna, M.: Percolation and epidemic thresholds in clustered networks, Phys. Rev. Lett. 97, 088701 (2006)

    Article  Google Scholar 

  29. Strauss, D.: On a general class of models for interaction, SIAM Review 28, 513–527 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vazquez, A.: Growing networks with local rules: Preferential attachment, clustering hierarchy and degree correlations, cond-mat/0211528 (2002)

    Google Scholar 

  31. Volz, E.: Networks with tunable degree distribution and clustering, Phys. Rev. E 70, 056115 (2003)

    Google Scholar 

  32. Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks: I. An introduction to Markov random graphs and p*, Psychometrika 61, 401426 (1996)

    Google Scholar 

  33. Watts, D. J., Strogatz, S. H.: Collective dynamics of small-world networks, Nature 393, 440442 (1998)

    Article  Google Scholar 

  34. White, J. G., Southgate, E., Thompson, J. N., Brenner, S.: Structure of the nervous system of the nematode C. elegans, Phil. Trans. R. Soc. London 314, 1340 (1986)

    Google Scholar 

  35. Wilf, H. S.: generatingfunctionology, 2nd edition, Academic Press, London (1994)

    MATH  Google Scholar 

  36. Zachary, W.: An information flow model for conflict and fission in small groups, Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

Download references

Acknowledgements

MT and YB are grateful for the support of the EC (project MATHfSS 15661) and DIP (project Compositionality F 1.2). LS and YAR are grateful for the support of the James S. McDonnell Foundation and the Israeli Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yakir Berchenko , Yael Artzy-Randrup , Mina Teicher or Lewi Stone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Boston, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Berchenko, Y., Artzy-Randrup, Y., Teicher, M., Stone, L. (2009). The Big Friendly Giant: The Giant Component in Clustered Random Graphs. In: Ganguly, N., Deutsch, A., Mukherjee, A. (eds) Dynamics On and Of Complex Networks. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4751-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4751-3_14

  • Published:

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4750-6

  • Online ISBN: 978-0-8176-4751-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics