Skip to main content

Elliptic Curves with Large Analytic Order of Ш(E)

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 269))

  • 1889 Accesses

Summary

We present the results of our search for elliptic curves over \(\mathbb{Q}\) with exceptionally large analytic orders of the Tate-Shafarevich group. We exibit \(134\) examples of rank zero curves with |

E| > 18322 which was the largest known value for any explicit curve. Our record is a curve with

.

We also present examples of curves of rank zero with the value of \(L(E,1)\) much smaller, or much bigger, than in any previously known example. Finally, we present an example of a pair of non-isogeneous curves whose values of \(L(E,1)\) coincide in the first 11 digits after the point!

Partially supported by NSF Grants DMS-9707965 and DMS-0503401

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this article we adhere to the following notational convention. Let \(A(E)\) and \(B(E)\) be some quantities dependent on a curve E belonging to a specified class \(\mathcal{C}\) of elliptic curves defined over \({\mathbb Q}\). We say that \(A(E)\ll B(E)\) if for any \(K> 0\), there exists \(N_0\) such that \(A(E)< KB(E)\) for all curves in \(\mathcal C\) with conductor \(N(E)> N_0\). This is meaningful only if \(\mathcal C\) contains infinitely many nonisomorphic curves. If either \(A(E)\) or \(B(E)\) depends on some parameter \(\epsilon\), then the choice of \(N_0\) is allowed to depend on \(\epsilon\).

References

  1. C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over \({\mathbb Q}\,\): wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843–939.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. D. Beaver, 5-torsion in the Shafarevich-Tate group of a family of elliptic curves, J. Number Theory 82 (2000), 25–46.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. W. S. Cassels, Arithmetic on curves of genus 1. VI. The Tate-Šafarevič group can be arbitrarily large, J. reine angew. Math. 214/215 (1964), 65–70.

    Article  MathSciNet  Google Scholar 

  4. J. R. Chen, On the representation of a large even number as the sum of a prime and the product of at most two primes, Sc. Sinica 16 (1973), 157–176.

    MATH  Google Scholar 

  5. H. Cohen, A course in Computational Algebraic Number Theory. Graduate Texts in Math. 138 Springer-Verlag (1993).

    Google Scholar 

  6. J. E. Cremona, Algorithms for modular elliptic curves. Cambridge University Press 1997.

    Google Scholar 

  7. J. E. Cremona, Elliptic Curve Data (an online resource).

    Google Scholar 

  8. J. E. Cremona, T. A. Fischer, C. O'Neil, D. Simon, M. Stoll, Explicit n-descent on elliptic curves. I. Algebra, II. Geometry, preprints 2006.

    Google Scholar 

  9. T. Fisher, Some examples of 5 and 7 descent for elliptic curves over \({\mathbb Q}\), J. Eur. Math. Soc. 3 (2001), 169–201.

    Article  MATH  Google Scholar 

  10. G. Frey, Der Rang der Lösungen von \(y^2=x^3\pm p^3\) über \({\mathbb Q}\), Manuscr. math. 48 (1984), 71–101.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Frey, A relation between the value of the L-series of the curve \(y^2=x^3-k^3\) in \(s=1\) and its Selmer group, Arch. Math. 45 (1985), 232–238.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Goldfeld, J. Hoffstein, S. J. Patterson, On automorphic functions of half-integral weight with applications to elliptic curves. In: Number Theory Related to Fermat's Last Theorem (Birkhäuser, Boston, MA, 1982), 153–193.

    Google Scholar 

  13. D. Goldfeld and D. Lieman, Effective bounds on the size of the Tate-Shafarevich group, Math. Res. Letters 3 (1996), 309–318.

    MATH  MathSciNet  Google Scholar 

  14. D. Goldfeld and L. Szpiro, Bounds for the order of the Tate-Shafarevich group, Compos. math. 97 (1995), 71–87.

    MATH  MathSciNet  Google Scholar 

  15. C. Gonzalez-Avilés, On the conjecture of Birch and Swinnerton-Dyer, Trans. Amer. Math. Soc. 349 (1997), 4181–4200.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Grigorov, A. Jorza, S. Patrikis, W.A. Stein, C. Tarniţă, Verification of the Birch and Swinnerton-Dyer conjecture for specific elliptic curves, Math. Comput. (to appear).

    Google Scholar 

  17. M. Hindry, Why it is difficult to compute the Mordell-Weil group? In: Diophantine Geometry. Proceedings (ed. Umberto Zannier, Edizioni della Normale, Pisa, 2007).

    Google Scholar 

  18. J. Hoffstein, W. Luo, Nonvanishing of L-series and the combinatorial sieve, Math. Res. Letters 4 (1997), 435–442.

    MATH  MathSciNet  Google Scholar 

  19. H. Iwaniec and P. Sarnak, The non-vanishing of central values of automorphic L-functions and Landau-Siegel zeros, Israel J. Math. 120 (2000), 155–177.

    MATH  MathSciNet  Google Scholar 

  20. V. A. Kolyvagin, Finiteness of \(E({\mathbb Q})\) and \((E/{\mathbb Q})\) for a subclass of Weil curves, Izv. Akad. Nauk SSSR, 52 (1988), 522-540; translation in Math. USSR-Izv. 32 (1989), 523–541.

    Google Scholar 

  21. S. Lang, Conjectured diophantine estimates on elliptic curves. In: Arithmetic and Geometry–Papers dedicated to I. R. Shafarevich. Vol. 1 (Birkhäuser, Boston, MA, 1983), 155–171.

    Google Scholar 

  22. J. L. Lehman, Rational points on elliptic curves with complex multiplication by the ring of integers in \({\mathbb Q}(\sqrt{-7})\), J. Number Theory 27 (1987), 253–272.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Mai and M. R. Murty, On the Shafarevich-Tate group. (unpublished, reported in [R]).

    Google Scholar 

  24. L. Mai and M. R. Murty, A note on quadratic twists of an elliptic curve. In: Elliptic Curves and Related Topics. CRM Proceed. and Lecture Notes 4 (1994), 121–124.

    Google Scholar 

  25. D. W. Masser, Note on a conjecture of Szpiro, Astérisque 183 (1990), 19–23.

    MathSciNet  Google Scholar 

  26. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33–186.

    MATH  MathSciNet  Google Scholar 

  27. J. R. Merriman, S. Siksek, N. P. Smart, Explicit 4-descents on an elliptic curve, Acta arithmetica 77 (1996), 385–404.

    MATH  MathSciNet  Google Scholar 

  28. J. Nekovář, Class numbers of quadratic fields and Shimura's correspondence, Math. Ann. 287 (1990), 577–594.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Nitaj, Invariants des courbes de Frey-Hellegouarch et grands groupes de Tate-Shafarevich, Acta arithmetica 93 (2000), 303–327.

    MATH  MathSciNet  Google Scholar 

  30. K. Ono, Tate-Shafarevich groups of the congruent number elliptic curves, Acta arithmetica 81 (1997), 247–252.

    MATH  MathSciNet  Google Scholar 

  31. C. S. Rajan, On the size of the Shafarevich-Tate group of elliptic curves over function fields, Compos. math. 105 (1997), 29–41.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. E. Rohrlich, Unboundedness of the Tate-Shafarevich group in families of quadratic twists (an appendix to [HL]), Math. Res. Letters 4 (1997), 443–444.

    Google Scholar 

  33. H. E. Rose, On some elliptic curves with large Sha, Experimental Math. 9 (2000), 85–89.

    MATH  Google Scholar 

  34. K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. math 89 (1987), 527–559.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Math. 106, Springer, New York 1986.

    Google Scholar 

  36. J. Tunnell, A classical diophantine problem and modular forms of weight \(3/2\), Invent. math. 72 (1983), 323–334.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entiers, J. Math. Pure et Appl. 60 (1981), 375–484.

    MATH  MathSciNet  Google Scholar 

  38. B. M. M. de Weger, \(A+B=C\) and big Ш's, Quart. J. Math. 49 (1998), 105–128.

    MATH  Google Scholar 

  39. D. Zagier and G. Kramarz, Numerical investigations related to the L-series of certain elliptic curves, Journal of the Indian Math. Soc. 52 (1987), 51–69.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Dąbrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dąbrowski, A., Wodzicki, M. (2009). Elliptic Curves with Large Analytic Order of Ш(E). In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 269. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4745-2_9

Download citation

Publish with us

Policies and ethics