Skip to main content

Analytic Curves in Algebraic Varieties over Number Fields

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 269))

Summary

We establish algebraicity criteria for formal germs of curves in algebraic varieties over number fields and apply them to derive a rationality criterion for formal germs of functions on algebraic curves that extends the classical rationality theorems of Borel–Dwork and Polya–Bertrandias, valid over the projective line, to arbitrary algebraic curves over a number field. The formulation and the proof of these criteria involve some basic notions in Arakelov geometry, combined with complex and rigid analytic geometry (notably, potential theory over complex and p-adic curves). We also discuss geometric analogues, pertaining to the algebraic geometry of projective surfaces of these arithmetic criteria.

2000 Mathematics Subject Classifications: 14G40 (Primary); 14G22, 31A15, 14B20 (Secondary)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since the first version of this paper was written, the relevance of rigid analytic geometry à la Berkovich to develop a non-archimedean potential theory on p-adic curves, and consequently a “modern” version of Arakelov geometry of arithmetic surfaces satisfying the above principle of “equality of places,” has been largely demonstrated by A. Thuillier in his thesis [51].

  2. 2.

    Our terminology differs slightly from that in [11]. In the present article, the term capacitary metric will be used for two distinct notions: for the metrics on line bundles defined using equilibrium potentials just defined, and for some metrics on the tangent line to M at a point; see Section 5.C. In [11], it was used for the latter notion only.

  3. 3.

    The proofs in both references are similar and rely on the Abel–Jacobi map, together with the fact that K is the union of its locally compact subfields.

  4. 4.

    In the terminology of [11], nonnegative.

  5. 5.

    Using the fact that bounded subsets of \({\bf C}_p\) are contained in affinoids (actually, lemniscates) with arbitrarily close transfinite diameters.

References

  1. Y. Amice, Les nombres p-adiques, Collection SUP: Le Mathématicien, vol. 14, Presses Universitaires de France, Paris, 1975.

    Google Scholar 

  2. Y. André, G-functions and geometry, Vieweg, Braunschweig, 1989.

    MATH  Google Scholar 

  3. L. Bădescu, Projective geometry and formal geometry, Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series), vol. 65, Birkhäuser Verlag, Basel, 2004.

    Google Scholar 

  4. V. G. Berkovich, Spectral theory and analytic geometry over non-archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990.

    Google Scholar 

  5. F. A. Bogomolov, M. L. McQuillan, Rational curves on foliated varieties, prépublication M/01/07, I.H.É.S., 2001.

    Google Scholar 

  6. É. Borel, Sur une application d'un théorème de M. Hadamard, Bulletin des sciences mathématiques 18 (1894), 22–25.

    Google Scholar 

  7. S. Bosch, U. Güntzer, R. Remmert, Non-archimedean analysis, Grundlehren der Mathematischen Wissenschaften, vol. 261, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  8. S. Bosch, W. Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Bosch, W. Lütkebohmert, Formal and rigid geometry. II. Flattening techniques, Math. Ann. 296 (1993), no. 3, 403–429.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 21, Springer-Verlag, 1990.

    Google Scholar 

  11. J.-B. Bost, Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. École Norm. Sup. 32 (1999), no. 2, p. 241–312.

    MATH  MathSciNet  Google Scholar 

  12. J.-B. Bost, Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 161–221.

    MATH  MathSciNet  Google Scholar 

  13. J.-B. Bost, Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems, (A. Adolphson, F. Baldassarri, P. Berthelot, N. Katz, F. Loeser, eds.), vol. I, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, 371–418.

    Google Scholar 

  14. J.-B. Bost, Evaluation maps, slopes, and algebraicity criteria, Proceedings of the International Congress of Mathematicians (Madrid 2006) (M. Sanz-Solé, J. Soria, J. L. Varona, J. Verdera, eds.), vol. II, European Mathematical Society, 2007, 371–418.

    Google Scholar 

  15. J.-B. Bost, H. Gillet, C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903–1027.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. G. Cantor, On an extension of the definition of transfinite diameter and some applications, J. Reine Angew. Math. 316 (1980), 160–207.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Chambert-Loir, Théorèmes d'algébricité en géométrie diophantienne (d'après J.-B. Bost, Y. André, D. & G. Chudnovsky), Astérisque (2002), no. 282, 175–209, Exp. No. 886.

    Google Scholar 

  18. H. Chen, Positivité en géométrie algébrique et en géométrie d'Arakelov : application à l'algébrisation et à l'étude asymptotique des polygones de Harder-Narasimhan, Thèse, École polytechnique, 2006.

    Google Scholar 

  19. D. V. Chudnovsky, G. V. Chudnovsky, Applications of Padé approximations to the Grothendieck conjecture on linear differential equations, Number theory (New York, 1983–84), Lecture Notes in Math., vol. 1135, 1985, 52–100.

    MathSciNet  Google Scholar 

  20. D. V. Chudnovsky, G. V. Chudnovsky, Padé approximations and Diophantine geometry, Proc. Nat. Acad. Sci. U.S.A. 82 (1985), no. 8, 2212–2216.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Deligne, Intersections sur les surfaces régulières, Groupes de monodromie en géométrie algébrique (SGA 7 II), Lecture Notes in Math., vol. 340, Springer-Verlag, 1973, 1–38.

    Google Scholar 

  22. B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631–648.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Eisenstein, Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller algebraischen Funktionen (1852), Mathematische Gesammelte Werke, Band II, Chelsea Publishing Co., New York, 1975, 765–767.

    Google Scholar 

  24. A. Franchetta, Sulle curve riducibili appartenenti ad una superficie algebrica, Univ. Roma. Ist. Naz. Alta. Mat. Rend. Mat. e Appl. (5) 8 (1949), 378–398.

    MATH  MathSciNet  Google Scholar 

  25. J. Fresnel, M. Matignon, Sur les espaces analytiques quasi-compacts de dimension 1 sur un corps valué complet ultramétrique, Ann. Mat. Pura Appl. (4) 145 (1986), 159–210.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Graftieaux, Formal groups and the isogeny theorem, Duke Math. J. 106 (2001), no. 1, 81–121.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Graftieaux, Formal subgroups of abelian varieties, Invent. Math. 145 (2001), no. 1, 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. Gruson, M. van der Put, Banach spaces, Mém. Soc. Math. France (1974), no. 39–40, 55–100.

    Google Scholar 

  29. W. Gubler, Local heights of subvarieties over non-archimedean fields, J. Reine Angew. Math. 498 (1998), 61–113.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Harbater, Galois covers of an arithmetic surface, Amer. J. Math. 110 (1988), no. 5, 849–885.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403–450.

    Article  MathSciNet  Google Scholar 

  32. R. Hartshorne, Curves with high self-intersection on algebraic surfaces, Publ. Math. Inst. Hautes Études Sci. (1969), no. 36, 111–125.

    Google Scholar 

  33. R. Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, vol. 156, Springer-Verlag, Berlin, 1970.

    Book  Google Scholar 

  34. H. Hironaka, On some formal imbeddings, Illinois J. Math. 12 (1968), 587–602.

    MATH  MathSciNet  Google Scholar 

  35. H. Hironaka, H. Matsumura, Formal functions and formal embeddings, J. Math. Soc. Japan 20 (1968), 52–82.

    Article  MATH  MathSciNet  Google Scholar 

  36. Y. Ihara, Horizontal divisors on arithmetic surfaces associated with Belyĭ uniformizations, The Grothendieck theory of dessins d'enfants (Luminy 1993) (L. Schneps, ed.), London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, 245–254.

    Google Scholar 

  37. E. Kani, Potential theory on curves, Théorie des nombres (Quebec, PQ, 1987), de Gruyter, Berlin, 1989, 475–543.

    Google Scholar 

  38. Yu. I. Manin, New dimensions in geometry, Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., vol. 1111, Springer, Berlin, 1985, 59–101.

    Google Scholar 

  39. H. Matsumura, Commutative Algebra, Mathematics Lecture Notes Series, Benjamin/Cummings, 1980.

    MATH  Google Scholar 

  40. L. Moret-Bailly, Groupes de Picard et problèmes de Skolem. I., Ann. Sci. École Norm. Sup. 22 (1989), no. 2, 161–179.

    MATH  MathSciNet  Google Scholar 

  41. L. Moret-Bailly, Un problème de descente, Bull. Soc. Math. France 124 (1996), 559–585.

    MATH  MathSciNet  Google Scholar 

  42. D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. Inst. Hautes Études Sci. 9 (1961), 5–22.

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Pólya, Über gewisse notwendige Determinantenkriterien für die Fort-setzbarkeit einer Potenzreihe, Math. Ann. 99 (1928), 687–706.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. van der Put, The class group of a one-dimensional affinoid space, Ann. Inst. Fourier (Grenoble) 30 (1980), no. 4, 155–164.

    MATH  MathSciNet  Google Scholar 

  45. C. P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. (N.S.) 36 (1972), 41–51.

    MATH  MathSciNet  Google Scholar 

  46. H. Randriambololona, Métriques de sous-quotient et théorème de Hilbert–Samuel arithmétique pour les faisceaux cohérents, J. Reine Angew. Math. 590 (2006), 67–88.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Raynaud, Revêtements de la droite affine en caractéristique \(p> 0\) et conjecture d'Abhyankar, Invent. Math. 116 (1994), 425–462.

    Article  MATH  MathSciNet  Google Scholar 

  48. R. Rumely, C. F. Lau, R. Varley, Existence of the sectional capacity, Mem. Amer. Math. Soc. 145 (2000), no. 690, 1–130.

    MathSciNet  Google Scholar 

  49. R. S. Rumely, Capacity theory on algebraic curves, Lecture Notes in Math., vol. 1378, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  50. J.-P. Serre, Lectures on the Mordell–Weil theorem, third ed., Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997.

    Google Scholar 

  51. A. Thuillier, Théorie du potentiel sur les courbes en géométrie non archimédienne. Applications à la théorie d'Arakelov, Thèse, Université de Rennes 1, 2005. http://tel.archives-ouvertes.fr/tel-00010990/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Benoît Bost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bost, JB., Chambert-Loir, A. (2009). Analytic Curves in Algebraic Varieties over Number Fields. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 269. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4745-2_3

Download citation

Publish with us

Policies and ethics