Skip to main content

The Deformation Philosophy, Quantization and Noncommutative Space-Time Structures

  • Chapter
  • First Online:
Higher Structures in Geometry and Physics

Part of the book series: Progress in Mathematics ((PM,volume 287))

Abstract

The role of deformations in physics and mathematics, especially the theory of deformations of algebras developed by Gerstenhaber in the 1960s, led to the deformation philosophy promoted in mathematical physics by Flato since the 1970s, exemplified by deformation quantization and its manifold avatars, including quantum groups and the “dual” aspect of quantum spaces. Deforming Minkowski space-time and its symmetry to anti de Sitter has significant physical consequences that we sketch (e.g., singleton physics). We end by presenting an ongoing program in which anti de Sitter would be quantized in some regions, speculating that this could explain baryogenesis in a universe in constant expansion and that higher mathematical structures could provide a unifying framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I owe the quotation (in German) to the late Julius Wess.

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization I: Deformation of symplectic structures; II: Physical applications. Ann. Phys. (NY) 111, 61–110; 111–151 (1978)

    Article  MATH  Google Scholar 

  2. Berezin, F.A.: General concept of quantization. Comm. Math. Phys. 40(2), 153–174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bieliavsky, P., Claessens, L., Sternheimer, D., Voglaire, Y.: Quantized Anti de Sitter spaces and non-formal deformation quantizations of symplectic symmetric spaces. Amer. Math. Soc. Providence, R.I. 450, 1–24 (2008). arXiv:0705.4179v1[math.QA]

    Google Scholar 

  4. Bonneau, P., Gerstenhaber, M., Giaquinto, A., Sternheimer, D.: Quantum groups and deformation quantization: explicit approaches and implicit aspects. J. Math. Phys. 45(10), 3703–3741 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressler, P., Gorokhovsky, A., Nest, R., Tsygan, B.: Deformation quantization of gerbes. Adv. Math. 214(1), 230–266 (2007). math.QA/0512136

    Article  MathSciNet  MATH  Google Scholar 

  6. de Broglie, L.: Nobel lecture, quotations from pp. 255–256 in its translation Nobel Lectures, Physics 1922–1941. Elsevier, Amsterdam (1965). http://nobelprize.org/nobel_prizes/physics/laureates/1929/broglie-lecture.pdf

  7. Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Comm. Math. Phys. 212(3), 591–611 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Connes, A.: Noncommutative geometry. Academic, San Diego (1994)

    MATH  Google Scholar 

  9. Connes, A., Dubois-Violette, M.: Noncommutative finite dimensional manifolds II. Moduli space and structure of noncommutative 3-spheres. math.QA/0511337

    Google Scholar 

  10. Connes, A., Marcolli M.: Noncommutative geometry, quantum fields and motives. (2008). ftp://ftp.alainconnes.org/bookwebfinal.pdf

  11. Dirac, P.A.M.: Lectures on Quantum Mechanics. Belfer Graduate School of Sciences Monograph Series no. 2, Yeshiva University, New York, 1964. Generalized Hamiltonian dynamics, Canad. J. Math. 2, 129–148 (1950)

    MathSciNet  MATH  Google Scholar 

  12. Dirac, P.A.M.: The relation of classical to quantum mechanics. In: Proc. Second Canadian Math. Congress, Vancouver, 1949, pp. 10–31. University of Toronto Press, ON (1951)

    Google Scholar 

  13. Dirac, P.A.M.: A remarkable representation of the 3+2 de Sitter group. J. Math. Phys. 4(7), 901–909 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dito, J.: Star-product approach to quantum field theory: the free scalar field. Lett. Math. Phys. 20(2), 125–134 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dito, G., Flato, M., Sternheimer, D., Takhtajan, L.: Deformation quantization and Nambu mechanics. Comm. Math. Phys. 183(1), 1–22 (1997). hep-th/9602016

    Article  MathSciNet  MATH  Google Scholar 

  16. Dito, G., Sternheimer, D.: Deformation quantization: genesis, developments and metamorphoses. Deformation quantization (Strasbourg, 2001), pp. 9–54, IRMA Lect. Math. Theor. Phys. vol. 1. de Gruyter, Berlin (2002). math.QA/0201168

    Google Scholar 

  17. Engels, F.: http://www.marxists.de/science/mcgareng/engels1.htm and/or http://www.marxists.org/archive/marx/works/1877/anti-duhring/index.htm

  18. Flato, M.: Deformation view of physical theories. Czech. J. Phys. B32(4), 472–475 (1982)

    Article  Google Scholar 

  19. Flato, M., Frønsdal, C.: Composite electrodynamics. J. Geom. Phys. 5(1), 37–61 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Flato, M., Lichnerowicz, A., Sternheimer, D.: Deformations of Poisson brackets, Dirac brackets and applications. J. Math. Phys. 17(9), 1754–1762 (1976)

    Google Scholar 

  21. Flato, M., Hadjiivanov, L.K., Todorov, I.T.: Quantum deformations of singletons and of free zero-mass fields. Found. Phys. 23(4), 571–586 (1993)

    Article  MathSciNet  Google Scholar 

  22. Flato, M., Frønsdal, C., Sternheimer, D.: Singletons, physics in AdS universe and oscillations of composite neutrinos. Lett. Math. Phys. 48(1), 109–119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frønsdal, C.: Singletons and neutrinos. Conférence Moshé Flato 1999 (Dijon). Lett. Math. Phys. 52(1), 51–59 (2000)

    Google Scholar 

  24. Frønsdal, C.: Quantization on curves. With an appendix by Maxim Kontsevich. Lett. Math. Phys. 79(2), 109–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Galatzer-Levy, R.L.: Qualitative change from quantitative change: mathematical catastrophe theory in relation to psychoanalysis. J. Am. Psychoanal. Assoc. 26, 921–935 (1978)

    Article  Google Scholar 

  26. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Factorizations of polynomials over noncommutative algebras and sufficient sets of edges in directed graphs. Lett. Math. Phys. 74(2), 153–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79, 59–103 (1964); and (IV), Ann. Math. 99, 257–276 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gerstenhaber, M., Schack, S.D.: Algebraic cohomology and deformation theory. Deformation theory of algebras and structures and applications (Il Ciocco, 1986), pp. 11–264, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. vol. 247. Kluwer, Dordrecht (1988)

    Google Scholar 

  29. Groenewold, A.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hinich, V.: Deformations of sheaves of algebras. Adv. Math. 195(1), 102–164 (2005). math.AG/0310116

    Article  MathSciNet  MATH  Google Scholar 

  31. Inönü, E., Wigner, E.P.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA 39, 510–524 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures. Ann. Math. (2) 67, 328–466 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kontsevich, M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48(1), 35–72 (1999). math.QA/9904055

    Article  MathSciNet  MATH  Google Scholar 

  34. Kontsevich, M.: Deformation quantization of algebraic varieties. EuroConférence Moshé Flato 2000, Part III (Dijon). Lett. Math. Phys. 56(3), 271–294 (2001). math.AG/0106006

    Article  MathSciNet  Google Scholar 

  35. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). q-alg/9709040

    Article  MathSciNet  MATH  Google Scholar 

  36. Kostant, B.: Quantization and unitary representations. I. Prequantization. Lectures in modern analysis and applications, III, pp. 87–208. Lecture Notes in Mathematics, vol. 170, pp. 87–208. Springer, Berlin (1970)

    Google Scholar 

  37. Mathai, V., Melrose, R.B., Singer, I.M.: Fractional analytic index. J. Diff. Geom. 74(2), 265–292 (2006). math.DG/0402329,math.DG/0611819

    Article  MathSciNet  MATH  Google Scholar 

  38. Maurin, K., Ra̧czka, R. (eds.): Mathematical physics and physical mathematics. Proceedings of the International Symposium held in Warsaw, March 25–30, 1974. Mathematical Physics and Applied Mathematics, vol. 2. Reidel, Dordrecht (1976)

    Google Scholar 

  39. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–124 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nadaud, F.: Generalized deformations, Koszul resolutions, Moyal products. Rev. Math. Phys. 10(5), 685–704 (1998), Thèse, Dijon (janvier 2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nest, R., Tsygan, B.: Algebraic index theorem. Comm. Math. Phys. 172(2), 223–262 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Palamodov, V.P.: Associative deformations of complex analytic spaces. Lett. Math. Phys. 82(2–3), 191–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Riemann, B.: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. 1854 Habilitationsschrift, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13 (1868); translated by William Kingdon Clifford, On the Hypotheses which lie at the Bases of Geometry. Nature 8, 14–17 (1873) Transcribed and edited in 1998–2000 by David R. Wilkins, see http://www.emis.de/classics/Riemann/

  44. Segal, I.E.: A class of operator algebras which are determined by groups. Duke Math. J. 18, 221–265 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  45. Souriau, J.-M.: Structure of dynamical systems. A symplectic view of physics. Translated from the 1970 French edition by C.H. Cushman-de Vries. Translation edited and with a preface by R.H. Cushman and G.M. Tuynman. Progress in Mathematics vol. 149. Birkhäuser, Boston (1997)

    Google Scholar 

  46. Sternheimer, D.: Some reflections on mathematicians’ views of quantization. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 331, 199–220 (2006); edited in J. Math. Sci. (NY) 141(4), 1494–1505 (2007)

    Google Scholar 

  47. Sternheimer, D.: The geometry of space-time and its deformations from a physical perspective. In: From Geometry to Quantum Mechanics. Progr. Math. vol. 252, pp. 287–301. Birkhäuser, Boston (2007)

    Google Scholar 

  48. Van den Bergh, M.: On global deformation quantization in the algebraic case, J. Algebra 315(1), 326–395 (2007). math.AG/0603200

    Article  MathSciNet  MATH  Google Scholar 

  49. Weyl, H.: The theory of groups and quantum mechanics. Dutton/Dover, New York, 1931, translated from the second edition (1931) of Gruppentheorie und Quantenmechanik, Hirzel, Leipzig (1928)

    Google Scholar 

  50. Wigner, E.P.: Quantum corrections for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  Google Scholar 

  51. Woronowicz, S.L.: Pseudospaces, pseudogroups and Pontriagin duality. Mathematical problems in theoretical physics. (Proc. Internat. Conf. Math. Phys., Lausanne, 1979). Lecture Notes in Physics, vol. 116, pp. 407–412. Springer, Berlin (1980)

    Google Scholar 

  52. Yekutieli, A.: Deformation quantization in algebraic geometry. Adv. Math. 198(1), 383–432 (2005). math.AG/0310399,math.AG/07081654

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sternheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sternheimer, D. (2011). The Deformation Philosophy, Quantization and Noncommutative Space-Time Structures. In: Cattaneo, A., Giaquinto, A., Xu, P. (eds) Higher Structures in Geometry and Physics. Progress in Mathematics, vol 287. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4735-3_3

Download citation

Publish with us

Policies and ethics